Thermoelectric Properties of Bi₂Ca₂Co₂O_y Polycrystalline Textured Materials

E. Guilmeau¹, M. Mikami², D. Chateigner³ and R. Funahashi^{1,2}

 ¹ National Institute of Advanced Industrial Science and Technology, Midorigaoka, Ikeda, Osaka 563-8577, Japan
² CREST, Japan Science and Technology Agency, Ikeda, Osaka 563-8577, Japan

³ CRISMAT-ENSICAEN Laboratory, UMR CNRS 6508, 6 Bd. Marechal Juin, 14050 Caen Cedex, France

E-mail:e-guilmeau@aist.go.jp

The texturation of $Bi_2Ca_2Co_2O_y$ (BC222) polycrystalline materials using the hotforging technique has been investigated. We revealed a partial-melting reaction during the sintering step leading to the growth of very large plate like-grains (up to 50µm in diameter and several µm in thickness). Based on DTA/TGA, X-ray diffraction and SEM analysis, we detailed the mechanisms of reaction during the heat treatment. This liquid phase reaction represents a strongly interesting aspect to promote an efficient stacking and sliding of grains during the thermomechanical treatment. The hot-pressing conditions and grain size were shown to strongly affect the thermoelectric properties. Based on an innovative quantitative texture analysis, we established a clear relationship between the transport properties, the texture strength and the microstructure.