

Development of multilayer textured Ca₃Co₄O₉ materials for thermoelectric generators: influence of the anisotropy on the transport properties

D. Kenfaui^{1,2}*, B. Lenoir¹, D. Chateigner², B. Ouladdiaf³, M. Gomina², J. G. Noudem³

¹ Institut Jean Lamour, UMR 7198 CNRS-Université Lorraine, Parc de Saurupt, 54011 Nancy, France

² CRISMAT, UMR 6508 CNRS/ENSICAEN, LUSAC, IUT-Caen and Université de Caen Basse-Normandie, 6 Bd Maréchal Juin, 14050 CAEN Cedex 04, France
³ Institut Laue-Langevin (ILL), 6 rue J. Horowitz, BP 156-38042 Grenoble, Cedex 09, France

*email of corresponding author: driss.kenfaui@univ-lorraine.fr

Multilayer Ca₃Co₄O₉ thick thermoelectric (TE) materials were fabricated by hot-pressing stacked dense and strongly textured single-layer samples. Microstructure and volume quantitative texture investigations were undertaken by using scanning electron microscopy and neutron diffraction techniques, respectively. The results show a bulk density similar to single-layer samples, but remarkable texture strength reinforcement. The electrical resistivity, ρ , and Seebeck coefficient, *S*, were reproducibly measured in directions parallel (ρ^c and S^c) and perpendicular (ρ^{ab} and S^{ab}) to the mean **c**-axis. ρ showed a high anisotropy ratio $\frac{\rho^c}{\rho^{ab}}$ of 13.5 and 8.8 at 300 and 900 K, respectively, and ρ^{ab} kept the same values whereas ρ^c decreased in the multilayer samples. S^{ab} and S^c unexpectedly revealed different values. The thermal conductivity also displayed a significant anisotropy, with ratio $\frac{\kappa^{ab}}{\kappa^c} = 2.7$ at 900 K. The resulting figure-of-merit *ZT* is then noticeably anisotropic, with ratio $\frac{ZT^{ab}}{ZT^c} = 4.6$. ZT^{ab} was found 2 times larger than the *ZT* value of the conventional sintered Ca₃Co₄O₉ materials often used for TE modules

fabrication.