TEXTURE AND MICROSTUCTURE CONTROL IN (SrBi₂Nb₂O₉)_{1-x} (Bi₃TiNbO₉)_x CERAMICS

A. Moure, J. Ricote, D. Chateigner[§] and L. Pardo. Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain. [§]Laboratoire de Physique de l'État Condensé, Université du Maine-Le Mans, BP535, 72085 Le Mans cedex, France

Texture and microstructure are determinant factors of the physical properties of piezoelectric ceramics. Among them we have those based on compositions $(SrBi_2Nb_2O_9)_{1-x}$ (Bi_3TiNbO₉)_x, with an Aurivillius-type structure. It has been shown that from mechanochemically activated precursors it is possible to obtain isotropic and highly densified (>99%) ceramics by hot uniaxial pressing at temperatures as low as 700°C. The ceramics obtained are difficult to pole due to the submicron grain size. In order to promote grain growth without affecting the high density achieved, a combination of hot pressing and natural sintering is tested. The isotropic character of the ceramics, i.e., the absence of texture, is monitored by X-ray diffraction and pole figures. Dielectric strength and piezoelectric response are measured and correlated to the porosity content and grain size.