Mécanique

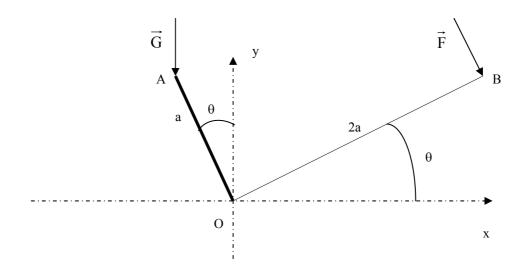
(Aucun document autorisé. Les calculatrices ne sont pas utiles. Les exercices 1, 2, 3, 4 sont indépendantes.)

Rédiger les exercices 1 et 2 sur une copie, les ex. 3 et 4 sur une autre copie.

1: Equilibre statique d'une barre coudée

Une barre OA de masse m et de longueur a est actionnée par une force F à l'aide d'une barre de masse négligeable OB soudée perpendiculairement à OA, de longueur 2a. La force est appliquée perpendiculairement à OB. Le système est soumis au champ de pesanteur \vec{g} , et est libre de tourner sans frottement autour de l'axe Oz. En A s'applique une force verticale \vec{G} .

- 11: Inventorier les forces appliquées au système, puis énoncer sans calcul les équations d'équilibre statique.
 - 12: Appliquer les équations précédentes pour déterminer:
 - 121: la réaction en O en fonction des forces appliquées
 - 122: la position d'équilibre θ en fonction de m, g, F, G.



2: Mouvement circulaire uniformément accéléré

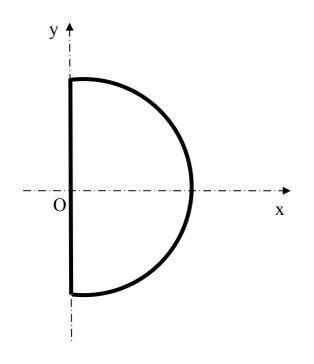
Un point matériel M de masse m décrit une trajectoire circulaire de rayon R et de centre O. Le mouvement est uniformément accéléré (θ = constante). La position du point M est repérée dans le repère polaire $(O, \overrightarrow{e_r}, \overrightarrow{e_\theta})$.

21: Donner l'expression de θ en fonction du temps, sachant qu'à t = 0, le mobile M est en A $(\theta = 0)$, avec une vitesse nulle.

Déterminer le temps que le point matériel mettra pour atteindre le point B $(\theta = \pi)$.

- **221:** Donner l'expression du déplacement dl = dOM dans le repère polaire.
- 222: Déterminer l'accélération dans ce même repère.
- **223:** En appliquant le principe fondamental de la dynamique, déterminer les composantes dans la base $(\overrightarrow{e_r}, \overrightarrow{e_\theta})$ de la résultante $\overrightarrow{F(t)}$ à laquelle est soumis le point matériel M.
- 23: Déterminer le travail $W_{A\to B}$ de la résultante $\overline{F(t)}$ lorsque M passe de A à B, en fonction de m, R et θ .
 - **24:** Donner l'expression du moment $\overline{\mathcal{M}_{\overline{F}/O}}$ de la force $\overline{F(t)}$ par rapport à O.
- **25:** Déterminer le moment cinétique $\overrightarrow{\sigma_0}$ de M en O. En appliquant le théorème du moment cinétique, retrouver l'expression du moment $\overline{\mathcal{M}_{\vec{F}/O}}$.

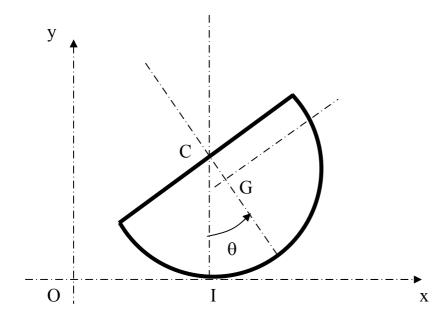
3: Centre de masse et moment d'inertie



- 31: Déterminer la position du centre de masse du demi-disque homogène, de centre O, de rayon R et de masse m.
- 32: Calculer son moment d'inertie I_{Gz} par rapport à l'axe Gz.

Le demi-disque précédent roule sans glisser dans le plan vertical (xOy). Le point de contact entre le demi-disque et le sol est I. Le plan d'appui (xOz) est immobile. On prendra CG = b, et $I_{Gz} = a \ mR^2$ (a = constante).

La position du demi-disque est répérée par θ, l'angle entre le rayon passant par G et la verticale.



41: Déterminer la vitesse $\overrightarrow{v_G}$ en utilisant la relation du champ des vitesses, en fonction de b, R, θ , $\dot{\theta}$.

42: