

Radiation interaction with matter and energy dispersive x-ray fluorescence analysis (EDXRF)

Giancarlo Pepponi Fondazione Bruno Kessler MNF – Micro Nano Facility pepponi@fbk.eu

MAUD school 2016 Caen, France

E Radiation – x-rays (photons) , neutrons, electrons

FONDAZIONE BRUNO KESSLER

Wave – particle duality	Planck / Einstein $E=h u$	De Broglie $\lambda = rac{h}{p}$
x-rays photons	electromagnetic radiation 0 rest mass $\ \ c=\lambda u$	$\lambda = \frac{hc}{E}$
neutrons	neutral particles 1.675E-27 kg 939.6 MeV/c2	$E_k = \frac{1}{2}mv^2 = \frac{p^2}{2m}$ $\lambda = \frac{h}{mv}$
electrons	charged particles 9.11E–31 kg 511.0 keV/c2	$E_k = eV = \frac{1}{2}mv^2 = \frac{p^2}{2m}$ $\lambda = \frac{h}{\sqrt{2meV}}\frac{1}{\sqrt{1 + \frac{eV}{2mc^2}}}$

Radiation interaction with matter and EDXRF – MAUD school 2016 – Giancarlo Pepponi

EXAMPLE 7 Radiation – x-rays (photons), neutrons, electrons

interaction type

x-rays photons

dipole

interaction partners

electrons atoms/electrons

neutrons

strong force magnetic neutron capture nuclei unpaired electrons nuclei

electrons

Coulomb force

electrons, nuclei

EXAMPLE 7 Radiation – x-rays (photons) , neutrons, electrons

		energy	wavelength	velocity	temperature
x-rays photons	CuKa1 MoKa1	8.048 keV 17.479 keV	1.54 A 0.71 A		
neutrons	thermal cold	25 meV 6.6 meV	1.8 A 3.5 A	2200 m/s 1127 m/s	293.6 K 77 K
electrons	SEM TEM	20 keV 200 keV	0.122 A 0.025 A		

EXAMPLE 7 Radiation – x-rays (photons), neutrons, electrons

E Solution – attenuation - Beer Lambert law

FONDAZIONE BRUNO KESSLER

$$I(x) = I_0 \exp(-\mu x)$$

 $\mu = \mu_a + \mu_s$

X-Rays cross section magnitude

data from: H. Ebel, R. Svagera, M. F. Ebel, A. Shaltout and J. H. Hubbell, Numerical description of photoelectric absorption coefficients for fundamental parameter programs, X-Ray Spectrometry, 32, 442–451 (2003)

Radiation interaction with matter and EDXRF – MAUD school 2016 – Giancarlo Pepponi

Atomic binding energies, electron energy levels

 $E=h\nu$ incident photon

Absorption edges Electron energy levels Shells

FONDAZIONE BRUNO KESSLER

shell	n	Ι	j	spin sign	max number of electrons			
K	1	0	0.5	1	2			
L1	2	0	0.5	1	2			
L2	2	1	0.5	-1	2			
L3	2	1	1.5	1	4			
M1	3	0	0.5	1	2			
M2	3	1	0.5	-1	2			
M3	3	1	1.5	1	4			
M4	3	2	1.5	-1	4			
M5	3	2	2.5	1	6			

z	shell	energy_eV	jump	level_width_eV
79	к	80724.9	4.874	52.1
79	L1	14352.8	1.15567	9.8
79	L2	13733.6	1.4	5.53
79	L3	11918.7	2.55	5.54
79	M1	3424.9	1.04	15.0
79	M2	3147.8	1.058	9.5
79	M3	2743.0	1.15776	8.5
79	M4	2291.1	1.07	2.18
79	M5	2205.7	1.092	2.18
ww	w.txrf.c	org/xraydata		

Radiation interaction with matter and EDXRF – MAUD school 2016 – Giancarlo Pepponi

Secondary effects – fluorescence vs Auger

FONDAZIONE BRUNO KESSLER

Z-Ray Fluorescence – characteristic lines

FONDAZIONE BRUNO KESSLER

Siegbahn = Manne Siegbahn (swedish physicist) Nobel Prize in Physics in 1924

 IUPAC = International Union of Pure and Applied Chemistry

 Siegbahn
 IUPAC

 Siegbahn
 IUPAC

Siegbahn	IUPAC	Siegbahn	IUPAC
Και	K-L3	$L\alpha_1$	L3-M5
Κα2	K-L2	$L\alpha_2$	L3-M4
$K\beta_1$	K-M3	$L\beta_1$	L2-M4
Kβ ₂	K-N2,N3	Lβ ₂	L3-N5
Kβ ₃	K-M2	Lβ ₃	L1-M3
		$L\beta_4$	L1-M2

Germanium

Line	Energy [keV]	Probability
$K lpha_1$	9.887	0.57380
Κα2	9.856	0.29550
$K\beta_1$	10.983	0.08470
Kβ ₂	11.103	0.00280
Kβ ₃	10.978	0.04320

Electrons interaction with matter

FONDAZIONE BRUNO KESSLER

-Characteristic X-Ray

https://en.wikipedia.org/wiki/Electron_scattering

http://serc.carleton.edu/research_education/geochemsheet s/electroninteractions.html

Inner shell ionization cross section: x-rays vs electrons

Fig. 12.2 Various categories of neutron interactions. The letters separated by commas in the parentheses show the incoming and outgoing particles.

http://www.uio.no/studier/emner/matnat/fys/FYS-KJM4710/h14/timeplan/neutron_chapter.pdf

Cross section : x-rays vs neutrons

FONDAZIONE BRUNO KESSLER

https://www.psi.ch/niag/comparison-to-x-ray

Cross section : x-rays vs neutrons

Attenuation coeffitients for thermal neutrons [cm⁻¹]

FONDAZIONE BRUNO KESSLER

																	A
1a	2a	3b	4b	5b	6b	7b		8		1b	2b	3a	4a	5a	6a	7a	0
н			C	7 - 1	- 1	5. 7	1					1					He
3.44												core core					0.02
Li	Be											В	С	N	0	F	Ne
3.30	0.79											101.60	0.56	0.43	0.17	0.20	0.10
Na	Mg											AI	Si	P	S	CI	Ar
0.09	0.15											0.10	0.11	0.12	0.06	1.33	0.03
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.06	0.08	2.00	0.60	0.72	0.54	1.21	1.19	3.92	2.05	1.07	0.35	0.49	0.47	0.67	0.73	0.24	0.61
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
80.0	0.14	0.27	0.29	0.40	0.52	1.76	0.58	10.88	0.78	4.04	115.11	7.58	0.21	0.30	0.25	0.23	0.43
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.29	0.07	0.52	4.99	1.49	1.47	6.85	2.24	30.46	1.46	6.23	16.21	0.47	0.38	0.27	10-00	Lan Line	
Fr	Ra	Ac	Rf	Ha		1			- 3	1				8	1	1	
	0.34														_		
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu			
Lanthanides	0.14	0.41	1.87	5.72	171.47	94.58	1479.04	0.93	32.42	2.25	5.48	3.53	1.40	2.75			
_	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	(11) 		
*Actinides	0.59	8.46	0.82	9.80	50.20	2.86		1.1111				1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1	Sec		1	

Attenuation coeffitients for X-ray [cm⁻¹] (150kV)

1a	2a	3b	4b	5b	6b	7b	8	6		1b	2b	3a	4a	5a	6a	7a	0
н	1					11 - POR								1		1	He
0.02												i	devenenti	i		manna	0.02
LI	Be											В	C	N	0	F	Ne
0.06	0.22											0.28	0.27	0.11	0.16	0.14	0.17
Na	Mg											AI	SI	P	S	CI	Ar
0.13	0.24											0.38	0.33	0.25	0.30	0.23	0.20
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.14	0.26	0.48	0.73	1.04	1.29	1.32	1.57	1.78	1.96	1.97	1.64	1.42	1.33	1.50	1.23	0.90	0.73
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
0.47	0.86	1.61	2.47	3.43	4.29	5.06	5.71	6.08	6.13	5.67	4.84	4.31	3.98	4.28	4.06	3.45	2.53
Cs	Ba	La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
1.42	2.73	5.04	19.70	25.47	30.49	34.47	37.92	39.01	38.61	35.94	25.88	23.23	22.81	20.28	20.22	1 1	9.77
Fr	Ra	Ac	Rf	Ha	1			1.1	1					1	1		
	11.80	24.47						-		-							
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu			
Lanthanides	5.79	6.23	6.46	7.33	7.68	5.66	8.69	9.46	10.17	10.91	11.70	12.49	9.32	14.07			
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Vf	Es	Fm	Md	No	Lr			
"Actinides	28.95	39.65	49.08									-	1.1.1.1		1		

https://www.psi.ch/niag/comparison-to-x-ray

Neutron cross section

Scattering (full line) and absorption (dotted) cross sections of light element commonly used as neutron moderators, reflectors and absorbers, the data was obtained from database NEA N ENDF/B-VII.1 using JANIS software

https://en.wikipedia.org/wiki/ Neutron_cross_section

http://www.physics.csbsju.edu/QM/square.17.html

Radiation interaction with matter and EDXRF – MAUD school 2016 – Giancarlo Pepponi

Data from: http://www.ioffe.rssi.ru/ES/Elastic/

Radiation interaction with matter and EDXRF – MAUD school 2016 – Giancarlo Pepponi

Solution X-ray differential elastic cross section and the form factor

$$\frac{d\sigma_{el}}{d\Omega} = \frac{d\sigma_T}{d\Omega} \left| F(x, Z) \right|^2$$

Thomson cross section

$$\frac{d\sigma_T}{d\Omega} = \frac{r_0^2}{2} (1 + \cos^2 \theta)$$

Atomic form factor (atomic scattering factor)

$$F(x,Z)$$
 $x = \frac{\sin \frac{\theta}{2}}{\lambda}$ Variable related
to the
momentum transfer

$$F(x,Z) = 4\pi \int_0^\infty r^2 \rho(r,Z) \frac{\sin(4\pi xr)}{4\pi xr} dr$$

X-ray differential elastic cross section and the form factor

... but actually there is a further dependence on energy ...

$$f = f^{0}(x, Z) + f'(E, Z) + if''(E, Z)$$

$$F(x,Z) = 4\pi \int_0^\infty r^2 \rho(r,Z) \frac{\sin(4\pi xr)}{4\pi xr} dr$$

$$f^{\prime\prime}$$
 photoelec

tric absorption

corrections for photoabsorption (Kramers-Kronig dispersion) f'

relativistic effects, nuclear scattering

Diffraction (structure factor)

$$F(h,k,l) = \sum_{j} f_j e^{-M_j} e^{2\pi i(hx_j + ky_j + lz_j)}$$

EXAMPLE 7 X-ray differential elastic cross section and the form factor

forward scattering factors (x = theta = q = 0)

$$\begin{split} f &= f(0,Z,E) = f_1 + i f_2 & \text{photoabsorption} \\ f_2 &\equiv f'' & \mu_a = 2 r_0 \lambda f_2 \end{split}$$

$$f_1 \equiv f^0(x=0) + f'$$

f1 and f2 are directly related to the index of refraction (reflection, refraction, XRR)

$$n = 1 - \frac{1}{2\pi} N r_0 \lambda^2 (f_1 + if_2) \qquad \qquad \delta = \frac{1}{2\pi} N r_0 \lambda^2 f_1$$
$$n = 1 - \delta - i\beta \qquad \qquad \beta = \frac{1}{2\pi} N r_0 \lambda^2 f_2$$

EXAMPLE : X-ray differential inelastic cross section (Compton)

$$\frac{d\sigma_i}{d\Omega} = \frac{d\sigma_{KN}}{d\Omega} S(q, Z)$$
$$\frac{d\sigma_{KN}}{d\Omega} = \frac{r_0^2}{2} P(\theta, E)$$
$$P(\theta, E) = \frac{1}{\left(1 + \alpha(1 - \cos\theta)\right)^2} \left[1 + \cos^2\theta + \frac{\alpha^2(1 - \cos\theta)^2}{1 + \alpha(1 - \cos\theta)}\right] \qquad \alpha = \frac{E}{m_0 c^2}$$

$$S(q,Z) = \int_{\varepsilon>0} |F_{\varepsilon}(q,Z)|^2$$
 Inelastic scattering function

form factor elastic scattering

$$F(\vec{q}, Z) = \sum_{n=1}^{Z} \left\langle \Psi_0 \left| \exp(i\vec{q} \cdot \vec{r}_n) \right| \Psi_0 \right\rangle$$

$$F_{\varepsilon}(\vec{q}, Z) = \sum_{n=1}^{Z} \left\langle \Psi_{\varepsilon} \middle| \exp(i\vec{q} \cdot \vec{r}_{n}) \middle| \Psi_{0} \right\rangle$$

in a spectrum the Compton peak is broader due to the angle dependence (in the accepted solid angle there are different scattering angles) and due to Doppler broadening

X-Ray Absorption near edge fine structure

The X-ray Absorption Fine Structure (XAFS) of an iron foil

FONDAZIONE BRUNO KESSLER

Different phenomena for:

- 'free' atoms
- molecules
- condensed systems

Radiation interaction with matter and EDXRF - MAUD school 2016 - Giancarlo Pepponi

Z-Ray Fluorescence analysis

FONDAZIONE BRUNO KESSLER

EXAMPLE X-Ray Fluorescence analysis

Solution X-Ray Fluorescence analysis

FONDAZIONE BRUNO KESSLER

E X-Ray line families

FONDAZIONE BRUNO KESSLER

Siegbahn	IUPAC	Siegbahn	IUPAC
Και	K-L3	$L\alpha_1$	L3-M5
Κα2	K-L2	$L\alpha_2$	L3-M4
$K\beta_1$	K-M3	$L\beta_1$	L2-M4
Kβ ₂	K-N2,N3	Lβ ₂	L3-N5
Kβ₃	K-M2	Lβ ₃	L1-M3
		$L\beta_4$	L1-M2

Radiation interaction with matter and EDXRF – MAUD school 2016 – Giancarlo Pepponi

Sr-K lines

Radiation interaction with matter and EDXRF - MAUD school 2016 - Giancarlo Pepponi

window

Modelling the response function of energy dispersive X-ray spectrometers with silicon detectors

 $\epsilon_{E_{\zeta jk}}$

detector efficiency + response

F. Scholze, and M. Procop

E Detector artefacts / 'environmental' artefacts

FONDAZIONE BRUNO KESSLER

Radiation interaction with matter and EDXRF – MAUD school 2016 – Giancarlo Pepponi

X-Ray Fluorescence – intensity - Sherman equation

 $I_0 G_0 G_1$

geometrical factors and primary flux form the element independent proportionality constant

- 1. attenuation to depth z
- 2. photoelectric absorption in layer dz
- 3. fluorescence yield
- 4. transition probability
- (relative intensity of lines in shell)
- 5. attenuation to the detector
- 6. detector efficiency

X-Ray Fluorescence – intensity - Sherman equation

$$I_{\zeta j k \, layer} \propto W_{\zeta} \left(\frac{\tau_j}{\rho}\right)_{\zeta_E} \rho_s \, \omega_{\zeta j} p_{\zeta j k}$$

$$\cdot \frac{1\!-\!e^{-(\frac{\mu_{s,E_{\zeta jk}}}{\sin\phi_f}+\frac{\mu_{s,E}}{\sin\phi_i})T}}{\frac{\mu_{s,E_{\zeta jk}}}{\sin\phi_f}+\frac{\mu_{s,E}}{\sin\phi_i}}$$

 $I_0 G_0 G_1$

geometrical factors and primary flux form the element independent proportionality constant

- 1. attenuation to depth z
- 2. photoelectric absorption in layer dz
- 3. fluorescence yield
- 4. transition probability
- (relative intensity of lines in shell)
- 5. attenuation to the detector
- 6. detector efficiency

Integration over thickness

EXAMPLE 1 X-Ray Fluorescence – intensity - Sherman equation

$$I_{\zeta jk} = I_0 G S_{\zeta jk} \rho_s W_{\zeta} \int_{\mathbf{E}_{edge}}^{\mathbf{E}_{max}} \int_0^{\mathbf{t}} \exp\left[-\left(\frac{\mu_{s,E_0}}{\sin \phi_i} + \frac{\mu_{s,E_{\zeta jk}}}{\sin \phi_f}\right)z\right] dz dE$$

Monochromatic

$$I_{\zeta jk} = I_0 G S_{\zeta jk} \rho_s W_{\zeta} \int_0^t \exp\left[-\left(\frac{\mu_{s,E_0}}{\sin \phi_i} + \frac{\mu_{s,E_{\zeta jk}}}{\sin \phi_f}\right) z\right] dz$$

$$= I_0 G S_{\zeta jk} \rho_s W_{\zeta} \frac{1 - \exp\left[-\left(\frac{\mu_{s,E_0}}{\sin \phi_i} + \frac{\mu_{s,E_{\zeta jk}}}{\sin \phi_f}\right) t\right]}{\left(\frac{\mu_{s,E_0}}{\rho} + \frac{\mu_{s,E_{\zeta jk}}}{\sin \phi_f}\right)}$$

$$\left(\frac{\mu}{\rho}\right)_{sample} = \sum_{\zeta} W_{\zeta} \left(\frac{\mu}{\rho}\right)_{\zeta}$$

Fluorescence enhancement, secondary fluorescence

FONDAZIONE BRUNO KESSLER

J. Appl. Phys. 75, 2026 (1994); http://dx.doi.org/10.1063/1.356303 (3 pages)

Molecular beam epitaxial growth of single domain ZnSe on Ge

L. K. Li, Y. Wang, M. Jurkovic, and W. I. Wang

Fluorescence enhancement, secondary fluorescence

GaAs

FILIONE FONDAZIONE FONDAZIONE FONDAZIONE FONDAZIONE

Radiation interaction with matter and EDXRF – MAUD school 2016 – Giancarlo Pepponi

XRD : Rietveld XRF : Fundamental parameters method

In MAUD:

the XRD definitions are obviously followed, since they are contain more information:

from the XRD definition you can derive the XRF one, not the other way around

Radiation interaction with matter and EDXRF – MAUD school 2016 – Giancarlo Pepponi

XRF: energy, intensity fraction XRD: wavelength, intensity fraction

$$\lambda = \frac{hc}{E} \qquad \qquad \lambda(\text{Å}) = \frac{12.3984}{\text{E(eV)}}$$

In MAUD:

One or multiple wavelengths can be indicated with intensity fraction

Integration over different energies/wavelengths done numerically

Primary radiation – x-ray tube

Tube spectrum and filtered spectrum automatically calculated in MAUD

S Primary radiation – x-ray tube

Tube spectrum and filtered spectrum automatically calculated in MAUD

XRF and XRD signals related to different part of the X-ray primary beam In MAUD: defined separately, hence taken into account

X-Ray Fluorescence – intensity - Sherman equation

Radiation interaction with matter and EDXRF – MAUD school 2016 – Giancarlo Pepponi

$$F_{i} = \frac{1 - \exp[-(\mu_{f}^{*}(E_{0}) \csc \psi_{1} + \mu_{f}^{*}(E_{i}) \csc \psi_{2})a_{r}]}{(\mu_{f}^{*}(E_{0}) \csc \psi_{1} + \mu_{f}^{*}(E_{i}) \csc \psi_{2})a_{r}}$$

 μ^* = linear absorption coeficient

ar = radiometric particle diametera = geometric particle diameter

Similar to Brindley correction, but not quite the same: In Maud? Work in progress

overcome by sample preparation : fused beads 1050 deg C + lithium tetraborate (LiT or $Li_2B_4O_7$) and lithium metaborate (LiM or $LiBO_2$) (commonly used in various proportions)

Thank you for your attention!