

× × × × When a photon does encounter an atomic particle, it transfers energy to the particle. The energy may be reemitted back the way it came (reflected), scattered in a different direction or transmitted forward into the material.

The energy of photons used for optical spectroscopic measurements of various quanta

EHz : exahertz (10^{18}) - ZHz : zettahertz (10^{21}) - YHz : yottahertz (10^{24})

The energy of photons used for optical spectroscopic measurements of various quanta

Instrumentations using radiation for material analysis need to be optimized :

- source characteristics
- detection characteristics
- sample environment
- mechanical design

We can propose instrume	ents for this expertise:
- X-ray diffraction : pł	nase analysis, identification and quantification of phase
- X-ray diffusion (SAXS)	: nanoparticles morphology
- X-ray fluorescence	: elemental analysis
- X-ray imaging	: image of X-ray absorption
- X-ray reflection	: nanometric coating analysis

Focus on X-ray diffraction

Which material is able to diffract?

Anything which has a structure at the nanometric scale, with enough contrast.

Structure : ordering at the atomic scale Then, mostly crystallized material in bulk or powder but even in liquid cristals or in smoke

Contrast : X-ray interacts with electronic level Then, heavy atoms => high contrast

Each tool or instrument is designed to fulfill a task

According to its characteristics, it will be used in a defined range ...

A tool or an instrument can be designed according to the definition of a need ... \wedge

Instrument

× × ×

A hammer is designed according to the type of nail, and for the destination

=> Same type of instrument can have different design depending on the application

Instrument is designed for the need we are looking for. It allows to measure and quantify physical parameters (length, weight, power, energy, time...)

X-ray diffraction instrument

X-ray diffraction instrument

A light emission characterized by :

- a spectral range
- a solid angle
- intensity
- dimension and shape of the source

Optimizing the characteristics of a source allows to focus on a given interaction

Molybdenum spectrum vs the applied voltage

	fluorescence	imaging	diffraction	reflection	diffusion
Spectral range	large	large	Monochromatic (excepted Laue)	monochromati c	monochromatic
Solid angle	Few degrees	Large (60°)	Small to parallel or focusing	Very small	Very small or focusing
Source size	Small or large	Small for resolution improvment	small	small	small
Source shape	point/linear	point	Point or linear	linear	Point or linear
s is achieved by	v using appropr	iate optics (1D, 2D, r	monochromator m	irror collimator	elite)

This is achieved by using appropriate optics (1D, 2D, monochromator, mirror, collimator, slits ...)

X-ray diffraction instrument

Dx : Diffraction plane

F : focus of the source

M: Optical position (monochromator, mirror), involving a primary beam deviation

G : Goniometer center where is localized the sample

 $\boldsymbol{\mathsf{S}}$: Sample position

D: Diffraction device

Dir X: Direction of the primary beam

Dir Y: Direction perpendicular to the diffraction plane (axial direction)

Dir Z: Direction perpendicular to the sample surface (equatorial direction)

Sample orientation is defined by 3 Euleriean angles:

The Goniometer

- " $\Omega^{\prime\prime}$ angle is the incident angle on the sample surface

- " $\boldsymbol{\phi}$ " angle is the rotation belongs the normal axis to the sample surface

- " χ " angle allows to tilt sample belongs the axis intercept of the diffraction plane and sample surface

Remark:

- "20" angle belongs to the detection part

See CIF format: (IUCr) CIF 1.1 syntax specification

X-Ray diffraction, what kind of informations

What is the composition?
and how much?
what is the crystallite size and morphology?
Is-there any constrains inside crystallite?
Or in the overall sample?
Is there an organization at the crystallite scale?
And can we quantify a distribution? Pole figures,
Structure, organization of electronic density levels :
What is the structural modification of my sample vs physical parameters (P, T...)?
Structural anisotropy :

Phase identification Phases quantification Particles size, micro strains Stress analysis Preferred oritentation (powder) or texture (bulk) ODF cell parameters, valence, atomic occupation, ... dilatation, phase transition stress, texture, thin film characterization ...

X-Ray diffraction, powder vs crystal

der

Powder sample :

- Large number of grains probed by X-rays
- Grains are small according to beam size (20μm) -**N**O
- Each grain is able to diffract according to its orientation
- => several diffracted beam for a fixed sample orientation
- Diffraction plane intercepts all diffraction cones

Oriented polycrystal :

 large number of crystallite having a rule for organization

> exture diffractometer setup

Single cristal :

setup

- 1 unique grain probed by X-rays
- 1 unique diffacted signal for a given orientation of cristal
- => only possibilities to record several diffracted beam
- Moving cristal by using a goniometer and
- monochromatic beam
- Not moving cristal, but using a polychromatic beam
- \rightarrow Laue method (consult us to define the instrument)

X-Ray diffraction, detection types

OD Detection :

Acquisition is done Stepwise

2θ and statistics are time dependent

1D Detection :

Acquisition is done in snapshots Statistics is time dependent

2D Detection :

Acquisition is done in snapshots

Statistics is time dependent

Texture information but point beam required

Function matter

Phases

whatever the state, XRD allows to evidence and measure structural parameters in matter

Instrumental function for XRD

Instrumental function is governed by all components of the XRD instrument :

- -- source characteristics
- -- optics and collimation
- -- detection device
- -- sample environment

XRD components should be compatible to each other

Example : 1D optic is not recommended with a 2D detector (equatorial aberration)

-**The good knowledge of the instrumental function allows to estimate as well the quality of the result** -Example : absorption correction or LP correction are not the same in Bragg Brentano or in Debye Scherrer

The instrument must be adapted to the requested measurement

-Example : performing transmission measurement with Bragg-Brentano XRD is not appropriate

- Instrumental conditions must be correctly chosen (reproducibility of results)

-Example : choose of the appropriate wavelength vs sample

- Use of appropriate standards

Example : in reflection, eccentricity is influenced by transparency. Using standard with same absorption can correct this

Instrumental function for XRD

Elastic coherent interaction :

reflectometrie : investigation on thin film for measuring thickness, roughness and density **diffraction** : investigation on phases **absorption** : imaging and radiography.

Incoherent elastic interaction :

diffusion by a rough surface or cristalline defects.

Instrumental function for XRD – beam characteristics

Instrumental function for XRD – effect of sample holder

Instrumental function for XRD – effect of wavelength

Instrumental function for XRD – effect of optic type

Instrumental function for XRD – effect of optic

High flux by using elliptical mirror

CONDITIONS:

power : 38kV – 38mA, Furnace : FUR1200 acquisition: 3min

X-ray diffraction setup

Understanding how to get the result

- appropriate instrumental configuration
- appropriate sample conditioning
- appropriate calibrations / corrections

XRD for polycrystal with monochromatic beam – focusing geometry

Debye Scherrer geometry

Figure 2.25. Geometric arrangement of the Debye-Scherrer and Hull diffractometer

Bragg Brentano geometry Sample is an optical component!!

From Guinebretière

XRD for polycrystal with monochromatic beam – parallel beam geometry

Parallel beam geometry With parabolic (or elliptic) mirror

Figure 2.55. Parallel geometry configuration in the laboratory

From Guinebretière

XRD for polycrystal with polychromatic beam – parallel beam geometry

1- Structural information are diffracted by all the wavelength

2- Elements are emitting fluorecence signal

Need to have a detector with a **spacial detection**, able to dissociate **energy**

XRD-XRF angle-energy map (raw data)

Angle-energy map measured for a BaSO4 rich sample using Mo radiation not monochromatised and scanning the SDD detector from 5 to 47. in 2θ.

Ref. L. Lutterotti, U. Trento

Expected characteristics:

- 50mm Strip detector, composed by 100microns (could be 50?) linear pixel width

- High dynamic per pixel

- Each pixel is able to measure EDX with a resolution better then 180eV

- Light weight and low consumption
- No gas needed
- Real time detector with low dead time

- Possibility to combine several detectors in order to cover a larger intercept of the Debye cones

- Efficiency for energy range from 1keV to 30keV

XRD for single crystal with monochromatic beam – parallel beam geometry

Parallel beam geometry With flat cristals (1, 2 or 4 bounds)

Sample hold by appropriate goniometer Different type of configuration

XRD for single crystal with polychromatic beam – parallel beam geometry

The Laue method is mainly used to determine the orientation of large single crystals. White radiation is reflected from, or transmitted through, a fixed crystal.

The diffracted beams form arrays of spots, that lie on curves on the film. The Bragg angle is fixed for every set of planes in the crystal. Each set of planes picks out and diffracts the particular wavelength from the white radiation that satisfies the Bragg law for the values of d and θ involved.

Experimental

There are two practical variants of the Laue method, the back-reflection and the transmission Laue method:

Back-reflection Laue

In the back-reflection method, the film is placed **between** the x-ray source and the crystal. The beams which are diffracted in a backward direction are recorded. One side of the cone of Laue reflections is defined by the transmitted beam. The film intersects the cone, with the diffraction spots generally lying on an hyperbola.

Transmission Laue

In the transmission Laue method, the film is placed **behind** the crystal to record beams which are transmitted through the crystal. One side of the cone of Laue reflections is defined by the transmitted beam. The film intersects the cone, with the diffraction spots generally lying on an ellipse.

Case of

Application fields

Matter organisation at different scales

Mineral, organic, vegetal, animal ... All can be complex arrangements

H. Gleiter, Acta. Mater. 48 (2000) 1-29

Matter, different structure at different scales

Multi-scale strategy

For a better understanding, correlations should be done at a multi-scale:

CM – sample scale: profiling + imaging Identification of global texture of sample, surfaces, porosity ...

MM - grain scale : XRD + XRF Characterization of surfaces composition Σ => phases and elements

MIC – micro grain scale: Raman Identification of individual phases => individual phase distribution

XRD analytic techniques

Combined instruments

A way to automate material charaterization

Combined analytics, ID1 (SOLSA project)

XRD designed by INEL

- -- X-ray source (Cu)
- -- Multilayer optics and collimation -- CPS 180 detection
- -- motioned around the sample for omega axis

-XRF designed

-- SDD detector

Raman spectrometer

-- fiber

Sample holder

-- texture goniometer : chi, phi, Z, X and Y

Combined analytics, ID2b (SOLSA project)

-XRD on the basis of Equinox 100, developed by INEL

- -- X-ray source (Cu, Co, Mo)
- -- Multilayer optics and collimation
- -- CPS 180 detection

XRF designed for SOLSA project

- -- 4W X-ray source (Mo)
- -- SDD detector

Sample holder

- -- In reflection
- -- able to perform simultaneous XRD/XRF measurement

LUXREM Software designed by University of Trento

- simultaneous acquisition
- simultaneous data treatment by Rietveld

Combined refinement XRD-XRF

• Results on powder from Harzburgite H10, using Maud Rietveld SW: combined XRD/XRF

phase	Olivine	Liza	ardite	Eizardite Eiturbostratique Népouite Talc Enstatite Chromite		hromite							
Proportion (%)	58,48	1	5,23	16,4	48	6,98	0	2,77		0,06			
chemical	Μ	lg	Fe	Cr	Si	0	Ca	Cu	Mn	Zn	Ni	Al	Ti
Proportion (%)	15	5,83	8,35	0,25	18,08	52,74	0,39	0,02	0,14	0,01	0,20	3,28	0,04
chemical		Н	CI	TOTAL									
Proportion (%)		0,62	0,06	100,00									

X × × ×

Combined analysis for industry

A way to automate material charaterization

Promotion of the SOLSA research project

SOLSA, a H2020 collaborative research project

with :

- Eramet, coordinator
- BRGM
- Inel Thermo Fisher
- Eijkelkamp
- **CNRS-CRISMAT**
- Univ. de Trento
- Univ. de Verona
- Univ. de Vilnius
- TU Delft

EC INNOVATION RADAR

Identification of innovention potential by EU

The Innovation Radar

INEL INNOV

Designed startup to valorize

the products

Modulab

In field analytical solutions for mining e

Drilled core scanner with combined techniques

MORPHOLOGY AND MINERAL TEXTURE

→ RGB images and profilometer data: segmentation

1 (0 78.692) W (0 19.028) 8 (0 5.069) 0 (0 51.069)

DRILLED CORE SCANNER: MORPHOLOGY AND MINERALOGY

→ Combined data treatment : example on harzburgite sample

• Hyperspectral images data treatment

2				
	Minerals	Error	Color	Prop
	Olivine-Serpentine	0		56.56
5	Olivine-Serpentine-Sm	0		4.57
2	Pyroxene	0		2.73
2	Pyroxene-Serpentine	0		23.3
	Pyroxene-Serpentine	0		0.07
	Pyroxene-Serpentine	0		0.16
	Serpentine	0		7.82

- <u>Local investigation</u> by selecting targeted area
- <u>Segmentation</u> by comparing with referenced samples
- <u>Global investigation</u> :
 - Histogramme,
 - Structural data (faults, fractures...), ...
- Detection:
 - Mineralogy (Hyperspectral)
 - Shape/grain size
 - Roughness
 - Surface estimate \rightarrow m²
 - ...

CHEMICAL AND MINERALOGICAL DISCRETE COMBINED ANALYSIS

example on a sample of harzburgite ground into a powder

Chemical and mineralogical quantification:

Chemical elements identification (XRF) 1.

Selection of the possible phases in the XRD DB and Raman from the identified elements

"Rietveld Search-Match" treatment by using the selected phases 1.

Fe Kα

Cr _{Mn}

Fe Kß

XRF analysis

Measured

Calculated

400.0

200.0

5

ty^{1/2} [Co

Instatite		- 1	1.0	101		**	н н	1)	11	1.1	1 10	. 8		1110						19.81			B0100	F 100-114	0 0000 I	DE DI		0.0000	110	HINK	00014-8			
Forsterite							- 9												in 1	100 1	1.1		10.1	-	P.D.				. 80		10.041	800- 1000-1	- D D-1	10
izardite-2H1			1	,				1				1	11	,	,			,		11.1		,			,		10		40 D	1. 10		311	10 D	
	I A																																	- 1
	N	hawing and	m	1	Im	Y	Ann	M	Mr	N.	Y	h	M	Y	V	Mal	M	- m	3	hav	Myn	MM	2	M	h	ŝ	mith	W.	-	n/kau	vv	, where the	myn	w

Phases	Lizardite	Forsterite	Enstatite	Ni-Chromite	Quartz
Minilab Proportion (%)	42 ± 1	45 ± 2	12 ± 1	1 ± 1	-
Lab. Proportion (%)	46	41	13	-	trace

- Confirms the presence of forsterite, enstatite and chromite
- goethite is also detected(very small amount)

INEL INNOV

BENEFITS OF MODULAB

Reliability benefit

→ Good accuracy compared to laboratory analyses

ECONOMIC BENEFIT → Analysis is 50 to 100 times cheaper

TIME BENEFIT

- → Automated approach to concentrate labor on other tasks
- → Up to **20 times** more analyzed sample

TECHNOLOGICAL BENEFIT

→ Systematic banking of large amounts of data

ORGANISATIONNAL BENEFIT

- → Lesser dependence on external providers
- → Real time adjustment of the industrial parameters to optimize the process

ENVIRONNEMENTAL BENEFIT

 \rightarrow Limitation of sample transport

COMBINED ANALYSIS, A WAY TO AUTOMATE MATERIAL CHARACTERIZATION

THANKS FOR ATTENTION

henry.pilliere@inelinnov.com