

Radiation interaction with matter

Giancarlo Pepponi

Fondazione Bruno Kessler MNF – Micro Nano Facility

MAUD school 2015 Trento, Italy

Radiation – x-rays (photons), neutrons, electrons

Wave – particle duality

Planck / Einstein

$$E = h\nu$$

De Broglie

$$\lambda = \frac{h}{p}$$

x-rays photons

electromagnetic radiation

0 rest mass
$$c=\lambda \nu$$

 $\lambda = \frac{hc}{E}$

neutrons

neutral particles

$$E_k = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$

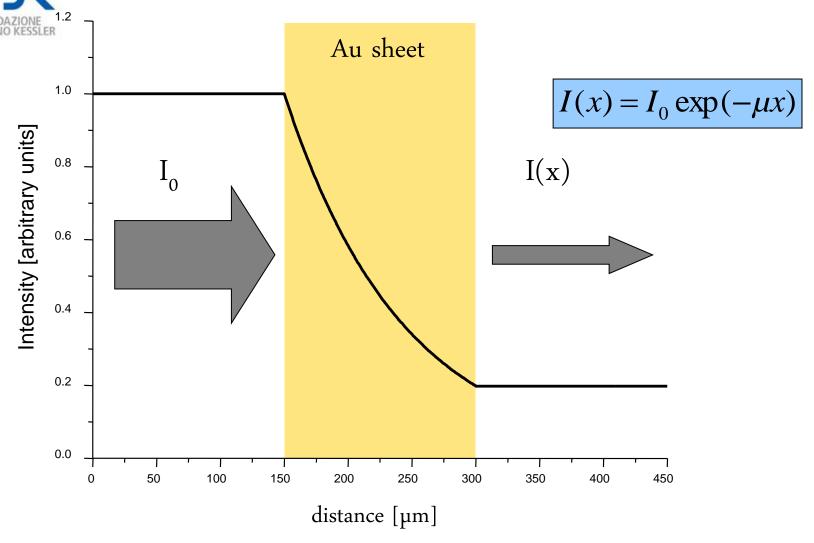
$$\lambda = \frac{h}{m}$$

electrons

charged particles

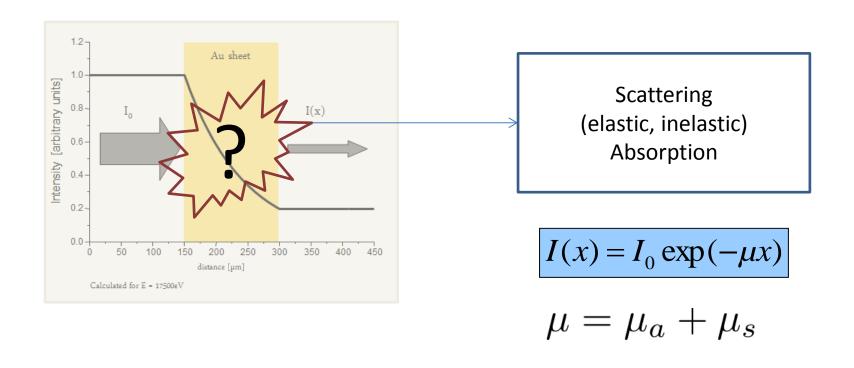
$$E_k = eV = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$
$$\lambda = \frac{h}{\sqrt{2meV}} \frac{1}{\sqrt{1 + \frac{eV}{2mc^2}}}$$

Radiation – x-rays (photons), neutrons, electrons

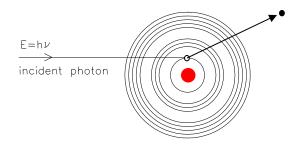

	interaction type	interaction partners
x-rays photons	dipole photoelectric absorption	electrons atoms/electrons
neutrons	strong force magnetic neutron capture	nuclei unpaired electrons nuclei
electrons	Coulomb force	electrons, nuclei

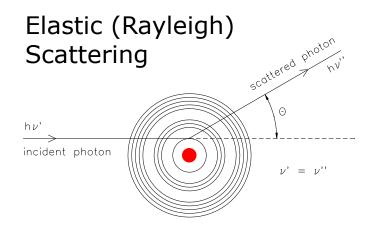
Radiation – x-rays (photons), neutrons, electrons

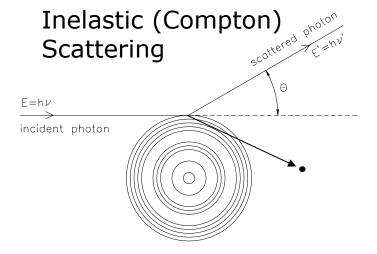
		energy	wavelength	velocity	temperature
x-rays photons	CuKa1 MoKa1	8.048 keV 17.479 keV	1.54 A 0.71 A		
neutrons	thermal cold	25 meV 6.6 meV	1.8 A 3.5 A	2200 m/s 1127 m/s	293.6 K 77 K
electrons	SEM TEM	20 keV 200 keV	0.122 A 0.025 A		


Radiation – attenuation - Beer Lambert law

Calculated for X-Rays E = 17500eV

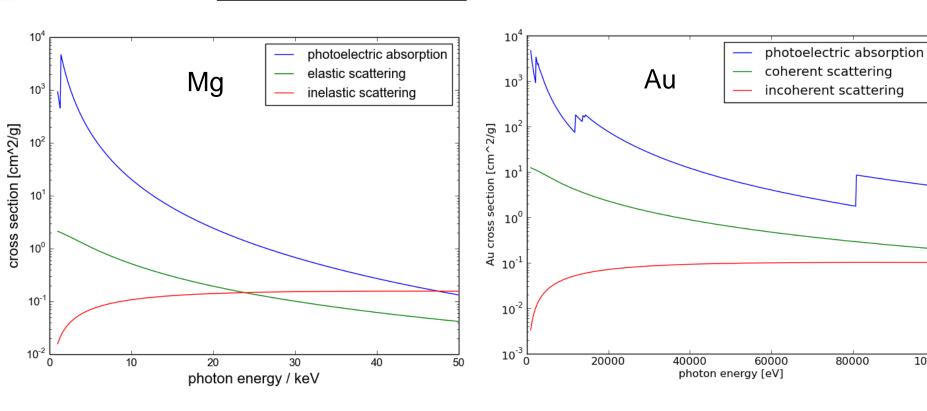

Radiation – attenuation - Beer Lambert law





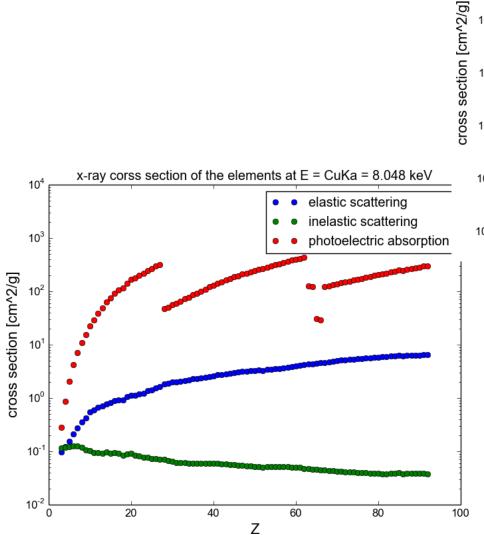
Attenuation X-Rays: microscopic view

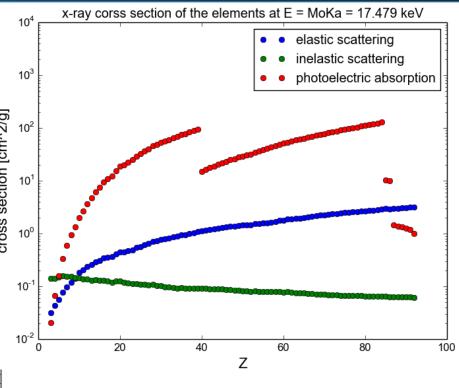
Photoelectric absorption



X-Rays cross section magnitude

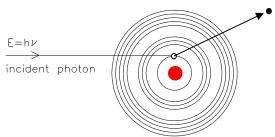
$$I(x) = I_0 \exp(-\mu x)$$


$$\mu = \sigma_c + \sigma_i + \tau$$

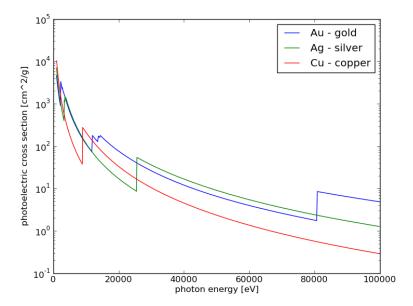


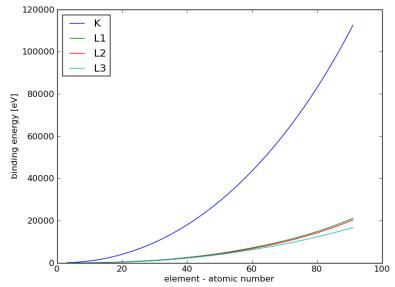
data from:

H. Ebel, R. Svagera, M. F. Ebel, A. Shaltout and J. H. Hubbell, Numerical description of photoelectric absorption coefficients for fundamental parameter programs, X-Ray Spectrometry, 32, 442–451 (2003) 100000



Atomic binding energies, electron energy levels

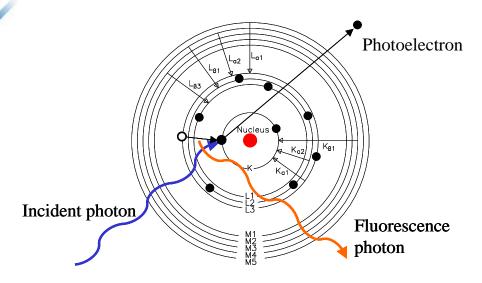


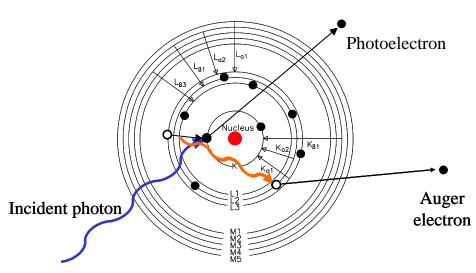

Absorption edges
Electron energy levels

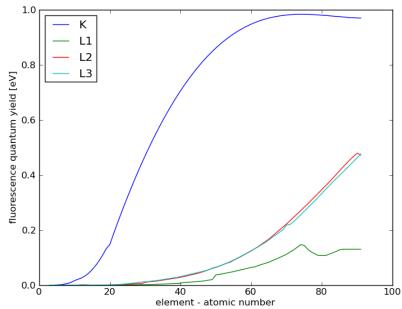
S	h	e	II	S
S	h	e	II	S

shell	n	П	j	spin sign	max number of electrons
K	1	0	0.5	1	2
L1	2	0	0.5	1	2
L2	2	1	0.5	-1	2
L3	2	1	1.5	1	4
M1	3	0	0.5	1	2
M2	3	1	0.5	-1	2
М3	3	1	1.5	1	4
M4	3	2	1.5	-1	4
M5	3	2	2.5	1	6

Z	shell	energy_eV	jump	level_width_eV
79	K	80724.9	4.874	52.1
79	L1	14352.8	1.15567	9.8
79	L2	13733.6	1.4	5.53
79	L3	11918.7	2.55	5.54
79	M1	3424.9	1.04	15.0
79	M2	3147.8	1.058	9.5
79	М3	2743.0	1.15776	8.5
79	M4	2291.1	1.07	2.18
79	M5	2205.7	1.092	2.18






www.txrf.org/xraydata

Secondary effects – fluorescence vs Auger

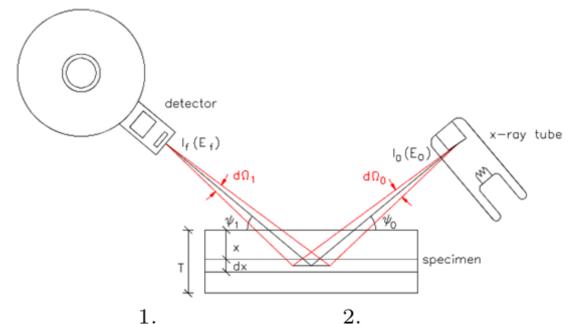
data from: M. O. Krause, J. Phys. Chem. Ref. Data 8 (1979) 307

X-Ray Fluorescence – characteristic lines

Siegbahn = Manne Siegbahn (swedish physicist) Nobel Prize in Physics in 1924

IUPAC = International Union of Pure and Applied Chemistry

Siegbahn	IUPAC	Siegbahn	IUPAC
$K \alpha_1$	K-L3	$Llpha_1$	L3-M5
Kα ₂	K-L2	$L\alpha_2$	L3-M4
Kβ ₁	K-M3	$L\beta_1$	L2-M4
Kβ ₂	K-N2,N3	Lβ ₂	L3-N5
Кβз	K-M2	Lβ ₃	L1-M3
		Lβ ₄	L1-M2


Nucleus $K_{\beta 1}$ K_{a2}

Germanium

Line	Energy [keV]	Probability
$K\alpha_1$	9.887	0.57380
Kα ₂	9.856	0.29550
Kβ ₁	10.983	0.08470
Kβ ₂	11.103	0.00280
Kβ ₃	10.978	0.04320

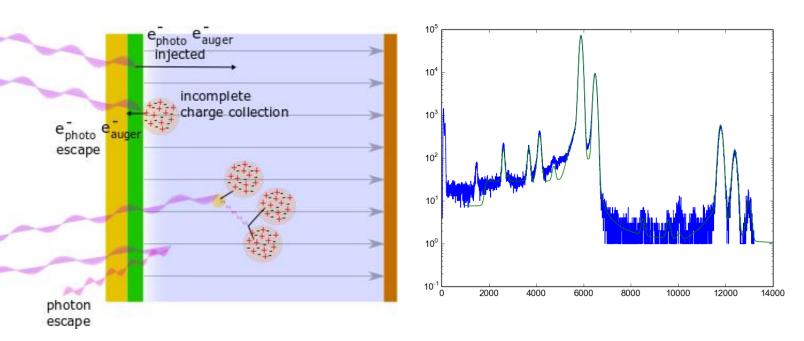
X-Ray Fluorescence – intensity - Sherman equation

$$I_0 G_0 G_1$$

geometrical factors and primary flux form the element independent proportionality constant

$$dI_{\zeta jk} \propto e^{-\mu_{s,E_0} \frac{z}{\sin \phi_i}} W_{\zeta} \left(\frac{\tau_j}{\rho}\right)_{\zeta_{E_0}} \rho_s dz$$

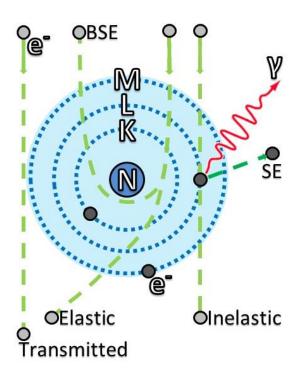
1.


$$\cdot \omega_{\zeta j} p_{\zeta j k} e^{-\mu_{s, E_{\zeta j k}} \frac{z}{\sin \phi_f}} \epsilon_{E_{\zeta j k}}$$

5.

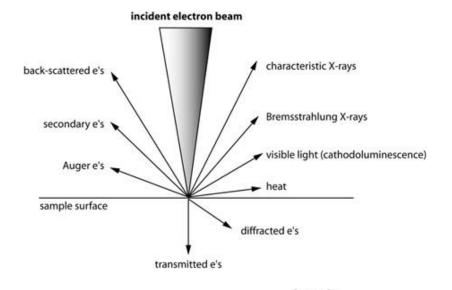
- 1. attenuation to depth z
- 2. photoelectric absorption in layer dz
- 3. fluorescence yield
- 4. transition probability (relative intensity of lines in shell)
- 5. attenuation to the detector
- 6. detector efficiency

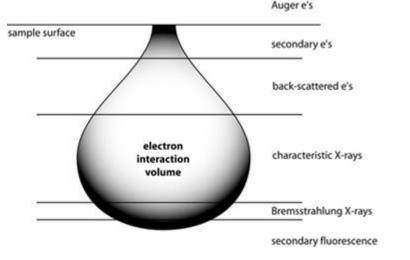
 $\epsilon_{E_{\zeta j k}}$ detector efficiency + response



Modelling the response function of energy dispersive X-ray spectrometers with silicon detectors

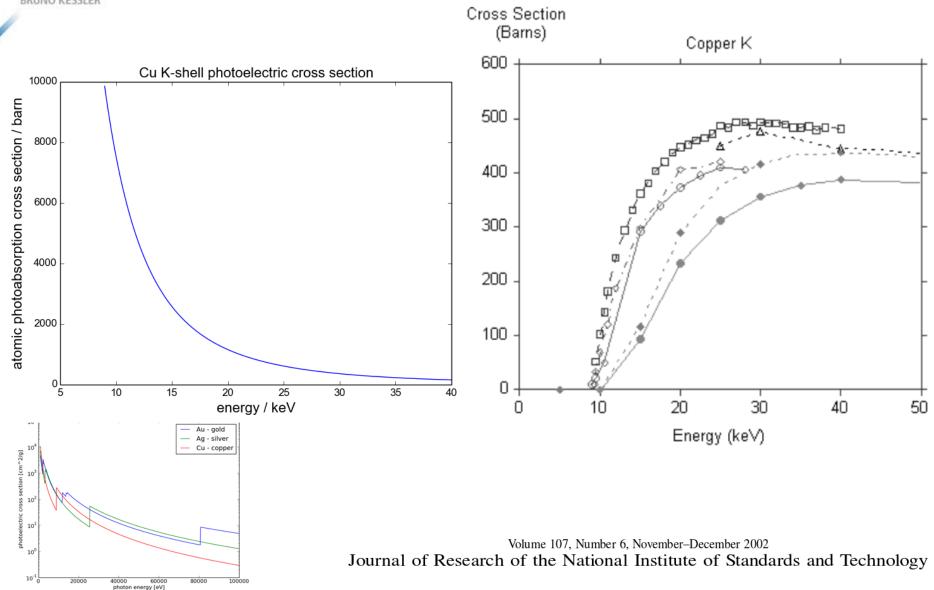
F. Scholze, and M. Procop




Electrons interaction with matter

- OBeam Electron
- Atomic Shell Electron
- Electron Cloud
- Beam Electron Path
- Secondary Electron Path
- —Characteristic X-Ray

https://en.wikipedia.org/wiki/Electron_scattering



http://serc.carleton.edu/research_education/geochemsheet s/electroninteractions.html

Inner shell ionization cross section: x-rays vs electrons

Neutrons interaction with matter

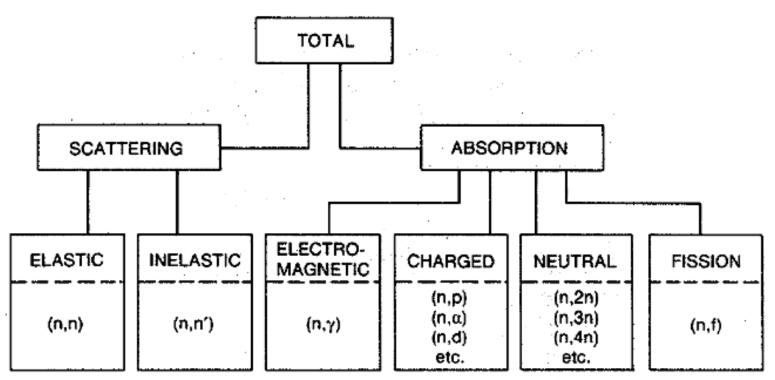
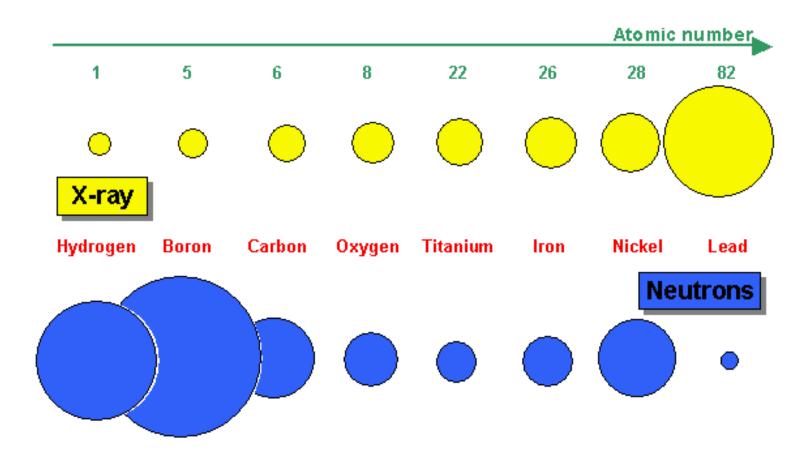



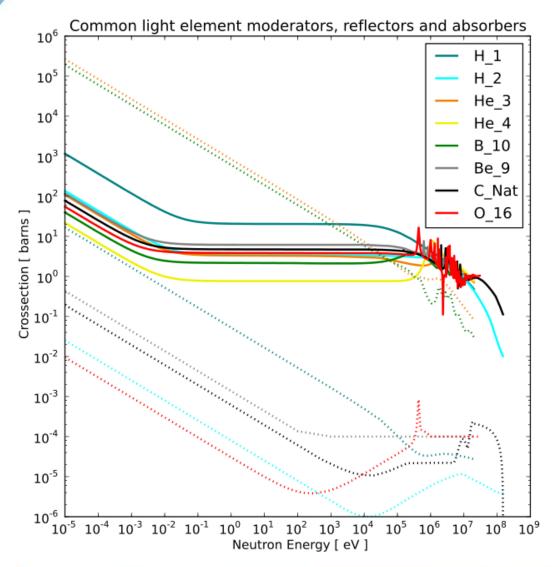
Fig. 12.2 Various categories of neutron interactions. The letters separated by commas in the parentheses show the incoming and outgoing particles.

http://www.uio.no/studier/emner/matnat/fys/FYS-KJM4710/h14/timeplan/neutron_chapter.pdf

Cross section : x-rays vs neutrons

https://www.psi.ch/niag/comparison-to-x-ray

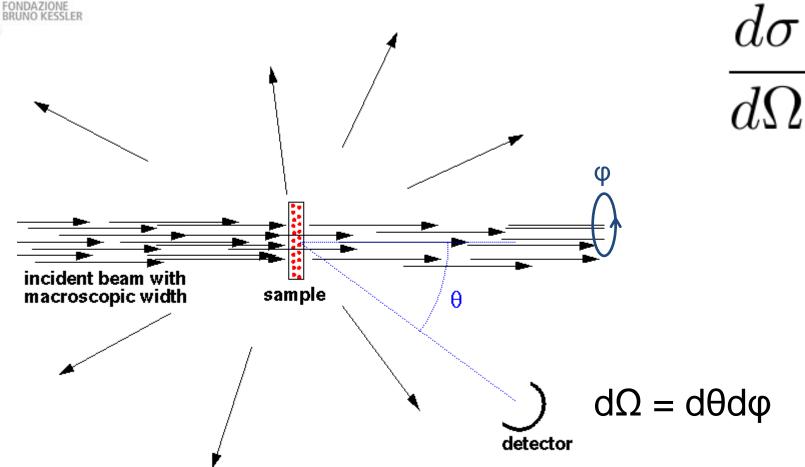
Cross section : x-rays vs neutrons


1a	2a	3b	4b	5b	6b	7b		8		1b	2b	3a	4a	5a	6a	7a	0
Н			Š					100									He
3.44													- i				0.02
Li	Be											В	C	N	0	F	Ne
3.30	0.79											101.60	0.56	0.43	0.17	0.20	0.10
Na	Mg											Al	Si	Р	S	CI	Ar
0.09	0.15											0.10	0.11	0.12	0.06	1.33	0.03
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.06	0.08	2.00	0.60	0.72	0.54	1.21	1.19	3.92	2.05	1.07	0.35	0.49	0.47	0.67	0.73	0.24	0.61
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	-1	Xe
0.08	0.14	0.27	0.29	0.40	0.52	1.76	0.58	10.88	0.78	4.04	115.11	7.58	0.21	0.30	0.25	0.23	0.43
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.29	0.07	0.52	4.99	1.49	1.47	6.85	2.24	30.46	1.46	6.23	16.21	0.47	0.38	0.27	370-1-7	loon not	
Fr	Ra	Ac	Rf	Ha	-				- 8			-	1	10			
	0.34								8								
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu			
Lanthanides	0.14	0.41	1.87	5.72	171.47	94.58	1479.04	0.93	32.42	2.25	5.48	3.53	1.40	2.75			
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr			
Actinides	0.59	8.46	0.82	9.80	50.20	2.86			10			-					
Attenuati	on coeff	itients f	or X-ray	/ [cm ⁻¹]	(150kV)												
1a	2a	3b	4b	5b	6b	7b	8	6		1b	2b	3a	4a	5a	6a	7a	0
н				30					7%								He
0.02													Harrison.		-00000	77.000	0.0
Li	Be											В	С	N	0	F	Ne
0.06	0.22											0.28	0.27	0.11	0.16	0.14	0.1
Na	Ma											ΔΙ	SI	P	S	CI	Δı

1a	2a	3b	4b	5b	6b	7b	8	9	1)	lb di	2b	3a	4a	5a	6a	7a	0
Н			77-	30					9%							3	He
0.02													N.W.	i	=000000TT	messooil	0.02
Li	Be											В	С	N	0	F	Ne
0.06	0.22											0.28	0.27	0.11	0.16	0.14	0.17
Na	Mg											Al	SI	P	S	CI	Ar
0.13	0.24											0.38	0.33	0.25	0.30	0.23	0.20
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.14	0.26	0.48	0.73	1.04	1.29	1.32	1.57	1.78	1.96	1.97	1.64	1.42	1.33	1.50	1.23	0.90	0.73
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
0.47	0.86	1.61	2.47	3.43	4.29	5.06	5.71	6.08	6.13	5.67	4.84	4.31	3.98	4.28	4.06	3.45	2.53
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
1.42	2.73	5.04	19.70	25.47	30.49	34.47	37.92	39.01	38.61	35.94	25.88	23.23	22.81	20.28	20.22		9.77
Fr	Ra	Ac	Rf	Ha				11-3									
	11.80	24.47						1			ļ.	drugger)				1156116	
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu			
Lanthanides	5.79	6.23	6.46	7.33	7.68	5.66	8.69	9.46	10.17	10.91	11.70	12.49	9.32	14.07			
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Vf	Es	Fm	Md	No	Lr			
*Actinides	28.95	39.65	49.08					1000		12-1-1					-		

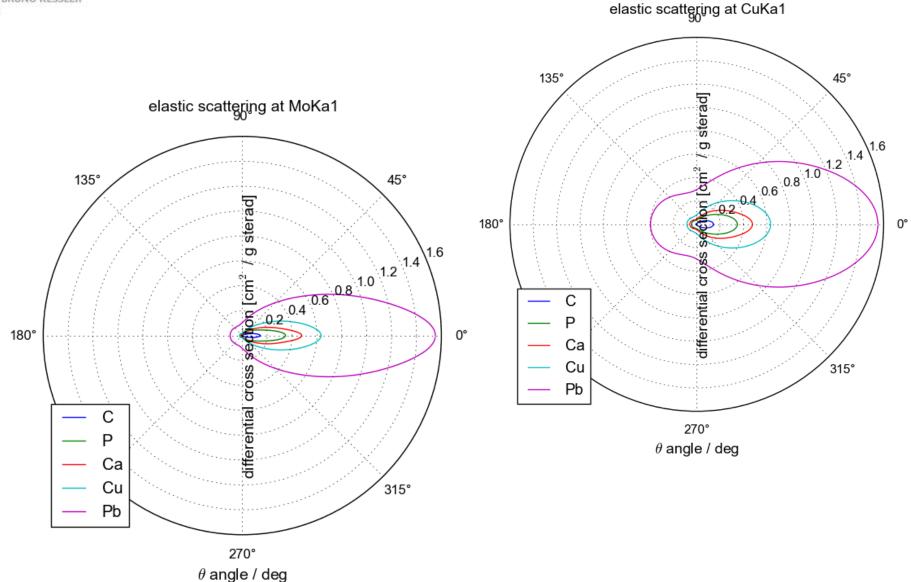
https://www.psi.ch/niag/comparison-to-x-ray

Neutron cross section

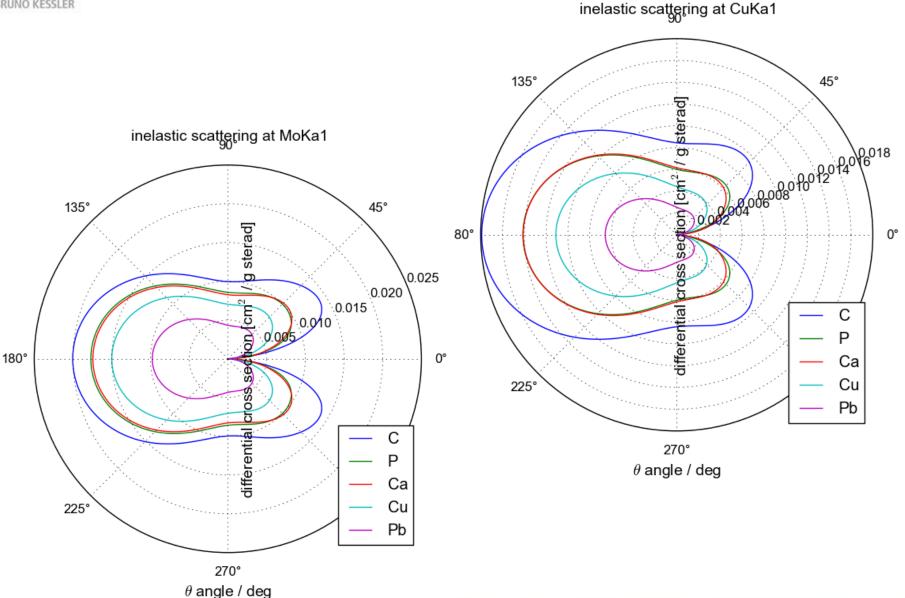


Scattering (full line) and absorption (dotted) cross sections of light element commonly used as neutron moderators, reflectors and absorbers, the data was obtained from database NEA N ENDF/B-VII.1 using JANIS software

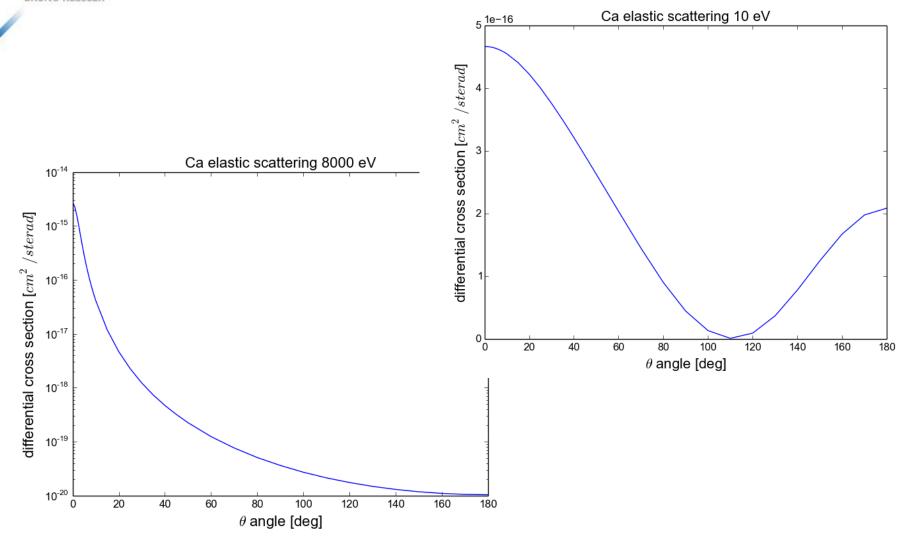
https://en.wikipedia.org/wiki/ Neutron_cross_section


Scattering - Differential cross section

http://www.physics.csbsju.edu/QM/square.17.html



X-Rays - Differential cross section – elastic scattering



X-Rays - Differential cross section – inelastic scattering

Electrons - Differential elastic cross section

Data from: http://www.ioffe.rssi.ru/ES/Elastic/

X-ray differential elastic cross section and the form factor

$$\frac{d\sigma_{el}}{d\Omega} = \frac{d\sigma_T}{d\Omega} |F(x,Z)|^2$$

Thomson cross section

$$\frac{d\sigma_T}{d\Omega} = \frac{r_0^2}{2} (1 + \cos^2 \theta)$$

Atomic form factor (atomic scattering factor)

$$F(x,Z) x = \frac{\sin\frac{\theta}{2}}{\lambda} Variable related to the momentum transfer$$

$$F(x,Z) = 4\pi \int_0^\infty r^2 \rho(r,Z) \frac{\sin(4\pi xr)}{4\pi xr} dr$$

X-ray differential elastic cross section and the form factor

... but actually there is a further dependence on energy ...

$$f = f^{0}(x, Z) + f'(E, Z) + if''(E, Z)$$

 $f^{\prime\prime}$ photoelectric absorption

 f^\prime corrections for photoabsorption (Kramers-Kronig dispersion) relativistic effects, nuclear scattering

Diffraction (structure factor)

$$F(h,k,l) = \sum_{j} f_j e^{-M_j} e^{2\pi i(hx_j + ky_j + lz_j)}$$

X-ray differential elastic cross section and the form factor

forward scattering factors (x = theta = q = 0)

$$f=f(0,Z,E)=f_1+if_2$$
 photoabsorption $f_2\equiv f''$ $\mu_a=2r_0\lambda f_2$ $f_1\equiv f^0(x=0)+f'$

f1 and f2 are directly related to the index of refraction (reflection, refraction, XRR)

$$n = 1 - \frac{1}{2\pi} N r_0 \lambda^2 (f_1 + i f_2)$$
$$n = 1 - \delta - i\beta$$

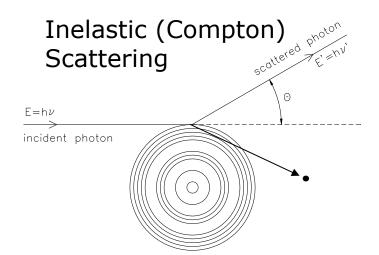
X-ray differential inelastic cross section (Compton)

$$\frac{d\sigma_i}{d\Omega} = \frac{d\sigma_{KN}}{d\Omega} S(q, Z)$$

$$\frac{d\sigma_{KN}}{d\Omega} = \frac{r_0^2}{2} P(\theta, E)$$

$$P(\theta, E) = \frac{1}{\left(1 + \alpha(1 - \cos\theta)\right)^2} \left[1 + \cos^2\theta + \frac{\alpha^2(1 - \cos\theta)^2}{1 + \alpha(1 - \cos\theta)}\right] \qquad \alpha = \frac{E}{m_0 c^2}$$

$$S(q,Z) = \int_{\varepsilon>0} |F_{\varepsilon}(q,Z)|^2$$
 Inelastic scattering function

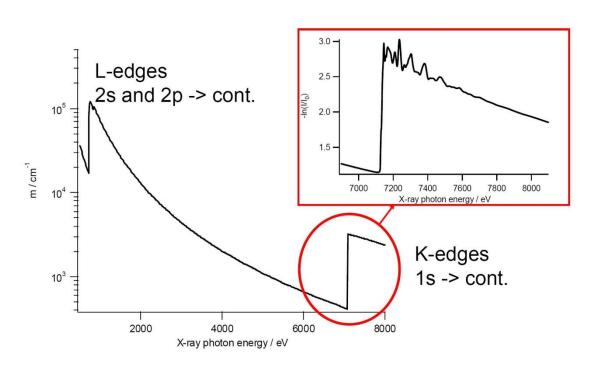

$$F_{\varepsilon}(\vec{q}, Z) = \sum_{n=1}^{Z} \left\langle \Psi_{\varepsilon} \middle| \exp(i\vec{q} \cdot \vec{r}_{n}) \middle| \Psi_{0} \right\rangle$$

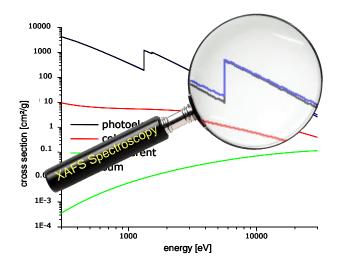
form factor elastic scattering

$$F(\vec{q}, Z) = \sum_{n=1}^{Z} \left\langle \Psi_0 \left| \exp(i\vec{q} \cdot \vec{r}_n) \right| \Psi_0 \right\rangle$$

X-ray inelastic (Compton) scattering

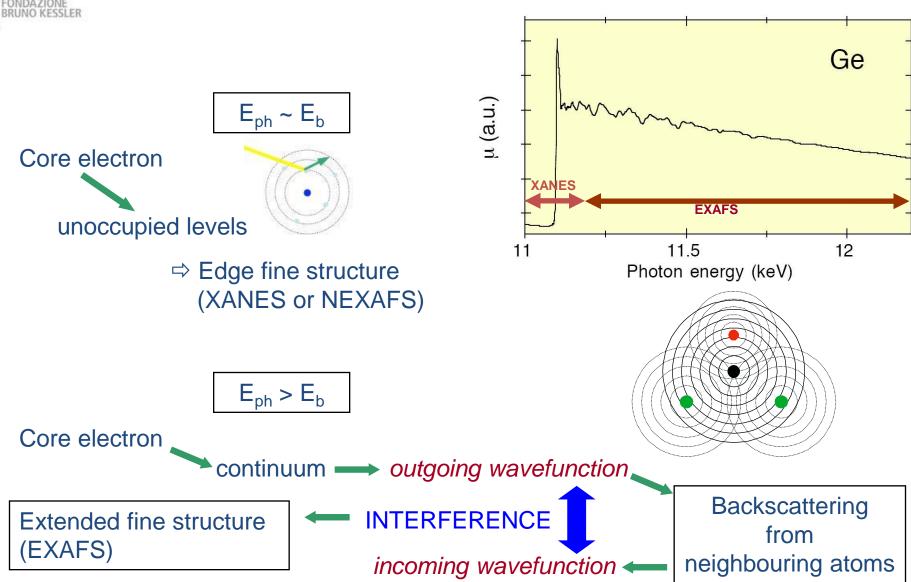
$$\lambda - \lambda' = \frac{h}{m_e c} (1 - \cos \theta)$$


$$E' = \frac{E}{1 + \frac{E}{m_0 c^2} (1 - \cos \theta)}$$


in a spectrum the Compton peak is broader due to the angle dependence (in the accepted solid angle there are different scattering angles) and due to Doppler broadening

X-Ray Absorption near edge fine structure

The X-ray Absorption Fine Structure (XAFS) of an iron foil



Different phenomena for:

- 'free' atoms
- molecules
- condensed systems

X-Ray Absorption near edge fine structure

Thank you for your attention!