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ABSTRACT

Texture and microstructure are determinant factors of the physical properties of
piezoelectric ceramics. Among them we have those based on compositions
(SrBi,Nb,Og);.x (BisTiNbOy),, with an Aurivillius-type structure. It has been
shown that from mechanochemically activated precursors it is possible to obtain
isotropic and highly densified (>99%) ceramics by hot uniaxial pressing at
temperatures as low as 700 °C. The ceramics obtained are difficult to pole due to
the submicron grain size. In order to promote grain growth without affecting the
high density achieved, a combination of hot pressing and natural sintering is
tested. The isotropic character of the ceramics, i.e., the absence of texture, is
monitored by X-ray diffraction and pole figures. Dielectric strength and
piezoelectric response are measured and correlated to the porosity content and
grain size.
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INTRODUCTION

Aurivillius compounds have as general formula [Bi,0,][A,1B.Osy+1], and are
made from n pseudo-perovskite layers alternating with [Bi,0,]*" layers!". Many
of these compounds are ferroelectrics with high ferro-paraelectric transition
temperature, which makes them good candidates to be tested for its use as high
temperature (>300 °C) piezoelectric ceramics™,

Dense ceramics of these compounds are not easy to obtain from crystalline
precursors powder. There are difficulties in compacting such powder particles
and sintering, due to lack of mass diffusion. Hot-pressing has been used in order
to obtain dense ceramics. Such ceramics develop an inconvenient texture
detrimental for the simultaneous occurrence of good ferroelectric and mechanical
properties. Alternative processing routes, as mechanochemical activation of the
ceramics precursors, have to be considered™.
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It is possible to obtain highly dense Bi; TINbO, ceramics (porosity <1%) by hot-
pressing of mechanochemically activated precursors at moderate temperatures
(700 °C-1000 °C). These ceramics are isotropic, because the grains do not
develop the size and morphology needed for the appearance of texture. When the
hot-pressing temperature increases (1050°C), the ceramics present a preferential
orientation with the crystallographic direction <001> parallel to the direction of
the applied pressure!. However, the small grain size of non-textured cerarmics
makes difficult the poling process needed to obtain a piezoelectric response. In
order to promote the grain growth in highly dense and isotropic ceramic, a
natural sintering process after hot-pressing is tested in this work.

EXPERIMENTAL PROCEDURE

Ceramics of composition (SrBi,Nb,0g)35(Bi;TiNbOg)oes, hereinafter called
SBN/BTN (35/65), were prepared from amorphous precursors’™. These
precursors were prepared by energetic milling in vibrating mill from
stoichiometric mixtures of analytical grade Bi,O;, Nb,Os, TiO, and SrCOs.
Mixtures were homogenised in an agate mortar for 5 minutes and then placed in a
stainless-steel pot with a 5 cm steel ball in a vibrating mill (Fritsch Pulverisette
0). An amorphous precursor, according to X-ray diffraction, was obtained by
mechanochemical activation of the mixture by milling during periods of 400 to
840 hours. The powder was shaped by uniaxial pressing at 300 Kg/cm® as disks
of approximately 10 mm diameter and 2 mm thickness, which were then
isostatically pressed at 2000 Kg/em?.

These disks were hot-pressed at 900 and 1000 °C during 1 hour under a pressure
of ~200 Kg/em® in alumina dies and surrounded by alumina powder. Ceramics
obtained in this way were then naturally sintered in order to increase the grain
size. 900 °C hot pressed ceramics were sintered at 1000 °C for 2 hours and 1050
and 1100 °C for 1 hour, whereas the 1000 °C hot-pressed ceramics were sintered
at 1050 and 1100 °C for 1 hour.

The diffraction patterns of the ceramics were obtained with a Siemens D500
powder diffractometer with a Cu anode, using Bragg-Brentano geometry, 1°min”'
rate and 0.05° 26 step.

The degree of orientation was obtained by quantitative texture analysis of
experimental pole figures'®”. These are obtained with a Huber four-circle
goniometer mounted on an INEL X-ray generator (Cu Kat) and an INEL CPS-
120 curved position sensitive detector. The pole figures are normalised into
distribution densities, which are expressed as multiples of a random distribution
(m.r.d.). A sample without any preferred orientation has pole figures with
constant values of 1 m.r.d. From several of the pole figures we calculated the
orientation distribution function (OD), following an iterative method. The OD
describes the amount of crystallites within a specific range of orientation. The
quality of the refinement is assessed by the reliability factors RP0 and RP1. From
the OD we can calculate relevant pole figures not available experimentally, and
estimate the texture strength by the texture index F* (F? =1 m.r.d.? for random
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materials). The calculations to obtain and manipulate the OD have been carried
out with the Berkeley Texture Package (BEARTEX).

Ceramics surfaces were polished and analysed by optical microscopy (Leitz
Laborlux) before and after thermal etching, in order to examine the porosity and
the grain morphology, respectively. Quantitative characterisation was carried out
with the aid of computerised image analysis and measurement system (IMCO10-
KAT386 system, Kontron Elektronic GMBH, 1990) by a procedure explained
elsewhere’®.

Ceramics with a 0.4-0.6 mm thickness with Pt electrodes sintered at 900 °C were
poled in a silicon oil bath at 200 °C with fields of ~100 kV/cm. The piezoelectric
coefficient d;; was measured in a Belincourt meter (at room temperature) by the
direct piezoelectric effect at 100 Hz.

RESULTS AND DISCUSSION

Figure 1 shows the x-ray diffraction pattern of the ceramic hot-pressed at 900 °C
and sintered at 1000 °C-1h, that shows the Aurivillius type structure
corresponding to the solid solution, without the appearance of second phases. It
seems to correspond to a randomly oriented ceramic, since the relatively low
intensity of the 00 10 peak indicates that the texture usually developed by hot-
pressing is not present. The rest of the ceramics studied here showed similar
patterns than the one shown in Figure 1. A quantitative analysis of texture was
carried out to further characterise the effectiveness of hot-pressing and
subsequent sintering to obtain isotropic ceramics.
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FIGURE 1. XRD of a ceramic hot-pressed at 900°C-1h and sintered at 1000°C-1h

Figure 2 shows the results of the quantitative texture analysis of the same
ceramic. Pole figures recalculated from OD are represented. The OD gives a
texture index F°=1.04 mrd’, with reliability factors RP0=6.6% and RP1=6.5%.
These low values show the good quality of the refinement. Recalculated pole
figure shows constant density values very close to 1 mrd, as corresponds to a
ceramic without any preferred orientations. These results clearly indicate that this
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ceramic presents a random distribution of crystallites and that no texture is
developed in the later sintering treatment.

1mrd

0.01

FIGURE 2 Quantitative texture analysis of a ceramic processed at 900°C-1h
(HP)+1000°C-1h

Table 1 shows the characteristics of the microstructure of the ceramics hot-
pressed and after sintering. All the ceramics have a porosity lower than 4% that
increases as the grain size does in each of the series. Pore area also increases with
the temperature.

Table I: Characteristics of microstructure of the SBN/BTN (35/65) ceramics
obtained by hot-pressing and sintering (HP: hot-pressed).

Pore Area Distributions Grain size Distributions d
33
Thermal iEatent [~ gy ca | Porosity | Area Ca Dinax (pC/N)
(pm) | (pm’) | (%) | (pm’) | (pm°) | Dy
as-HP 1.8 1.0 0.2 - - - £7
HP at | 1000°C-2h 2:9 1.7 1.4 2.0 2.6 1.6 +12
900°C
1h+ | 1050°C-1h 2.5 1.7 3.7 5.1 10.1 1.8 +7
1100°C-1h 2.9 1.9 3.3 113 21.0 1.9 +14
as-HP 2.5 1.6 0.5 - - = +7
HP at
1000°C | 1050°C-1h| 2.8 1.6 1.0 3.3 33 1.4 | +12,
1h+ 49 50 1.5 -13
1100°C-1h 2.8 35 3.5 75 10.9 1.7 +12
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Figure 3 shows the polished surface of the hot-pressed ceramics at 900°C-1h
before, (a), and after, (b) and (c), sintering at 1100°C-1h. As it happens with
Bi;TiNbO, ), SBN/BTN (35/65) ceramics with relative densities higher than
99% (Table I) of the theoretical one can be achieved by hot-pressing of
mechanochemically activated precursors. Thus, a porosity is developed in the
sintering process. The higher the sintering temperature with respect to the hot-
pressing one, the more important is the developed porosity and the more
deteriorated the final microstructure. The porosity is due to the appearance of
new intergranular pores and a higher pore size is linked to the grain size increase.

As expected, the data in Table I shows that the grain size, as well as the
aspect ratio increases with the sintering temperature. The hot pressed ceramics at
900 °C present a single lognormal grain size distribution, indicating that the re-
crystallization process taking place is still a normal grain growth one. The hot
pressed ceramics at 1000 °C and re-crystallized at 1050 °C shows a bimodal
distribution, which suggest an abnormal grain growth process in which some
grains grow at expenses of the surrounded grains, which growth is inhibited. The
reason could be a non-homogeneous stress distribution in the hot-pressed initial
ceramic, which difficulties the grain growth in some parts of the ceramics,
whereas this is promoted in others.
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FIGURE 3. Polished surface of SBN/BTN (35/65) ceramics hot pressed at
900°C before, (a) and after, (b) and (c) re-crystallization at 1100 °C-1h

It is also remarkable the difference of grain distributions for ceramics re-
crystallized at the same temperature from different initial microstructures. The
samples re-crystallizated after hot-pressing at 900°C-1h have a higher grain size
and aspect ratio. TEM results have revealed ™ that grains in Bi;TiNbOy ceramics
hot-pressed at low temperatures (700-850°C) have almost equiaxial shape and a
submicron size. This is most probably the aspect of the grains in the hot-pressed
ceramics, being larger when ceramics are pressed at 1000°C. The additional re-
crystallization of the hot-pressed ceramics makes differences not only in the size,
but also in the shape of the ceramics grains. Ceramics with initial fine grains
develop much easier the lamella shape characteristic of the Aurivillius-type
structure ceramics. This is mostly due to the larger reaction area for the required
mass diffusion linked to the small grain size.
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Table T also shows the piezoelectric coefficient di;. All the re-crystallized
ceramics have coefficients around 12-14 pC/N, except the 900 °C-1h
(HP)+1050°C-1h one. The coefficients increase with respect to the hot-pressed
ceramics as a consequence of a better polarizability. While electric fields of ~120
kV/cm can be applied to the re-crystallized ceramics, dielectric breakdown
occurs in the hot-pressed ceramics at fields lower than 100 kV/cm. Not only the
grain size but also the aspect ratio and the porosity seems to have influence in the
conductivity of the ceramics. This could have some influence in the poling
process. Further studies are necessary to clarify this point.

CONCLUSIONS

Aurivillius type ceramics with (SrBi,Nb,Og)o15(BisTiNbOo)oss nominal
composition have been prepared from mechanochemical activated precursors by
hot-pressing and later re-crystallization by natural sintering at higher
temperatures. The quantitative texture analysis of experimental XRD pole figures
assesses the isotropic character of the ceramics obtained by this process.
Porosity, pore size and grain distributions are dependent on the initial
microstructure. Grain growth from the initial virtually fully dense ceramic
promotes the appearance of new intergranular pores. However, ceramics with
porosity lower than 4% are obtained for all the conditions tested.

Due to the larger reaction area, ceramics re-crystallized from hot-pressed fine-
grained ones, developed higher grain growth and aspect ratio of the grains
increase.

Poling difficulties of hot-pressed ceramics are solved by the re-crystallization
treatment and higher values of the ds; piezoelectric coefficient obtained.
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