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This communication demonstrates a sharp inequality between the L2-norm and

the entropy of probability density functions. This inequality is applied to texture

analysis, and the relationship between the entropy and the texture index of an

orientation density function is characterized. More precisely, the orientation

space is shown to allow for texture index and entropy variations of orientation

probability density functions between an upper and a lower bound for the

entropy. In this way, it is proved that there is no functional relationship between

entropy and texture index of an orientation probability density function as

conjectured previously on the basis of practical numerical texture analyses using

the widely used pole-to-orientation probability density function reconstruction

software WIMV, known by the initials of its authors and their ancestors

(Williams–Imhof–Matthies–Vinel). Synthetic orientation probability density

functions were then synthesized, covering a large domain of variation for texture

index and entropy, and used to check the numerical results of the same software

package.

1. Introduction

In quantitative texture analysis (QTA), the most frequently used

measure to quantify the texture strength, i.e. the extent of preferred

orientation, on which most of the macroscopic properties of aniso-

tropic materials depend, is the texture index, F (Bunge, 1982). The

texture index aids in comparing the overall texture evolution of

sample series, provided texture components of the same type are

present in the polycrystalline aggregate. Another measure of the

overall texture strength is the entropy S, which actually measures the

deviation from the uniform texture or lack of ‘organization’ of

orientations (Schaeben, 1988). Both quantities F and S are calculated

from the orientation probability density function (ODF) of the

crystallites. In the texture community it has recently been assumed

that both the entropy and the texture index can be used to detect

possible discrepancies or artefacts introduced by the numerical ODF

reconstruction from experimental diffraction data (Chateigner,

2005). However, the exact relationship of the two quantities was

theoretically not well understood, nor were the mathematical

assumptions and practical prerequisites of the ODF reconstruction

software WIMV (Matthies & Vinel, 1982), designed to recover and

explain experimental data, sufficiently carefully examined.

In this short communication, after the general definition of the

entropy and the texture index as the L2-norm of a probability density

function, we initially consider the class of probability density func-

tions taking only two different values. For this class of probability

density functions, we prove that the entropy is bounded by zero and

the negative logarithm of the L2-norm. Then we show that the class

was chosen to be sufficiently large to characterize the relationship

between the entropy and the L2-norm of probability density func-

tions completely. Correspondingly, the next theoretical section is

basically organized as a sequence of mathematical definitions,

propositions and short proofs.

In the section devoted to practical numerical texture analysis, we

then examine how simulated ODFs with various texture index and

entropy values are recovered using the widely used ODF recon-

struction algorithm WIMV (Matthies & Vinel, 1982) as incorporated

in Beartex (Wenk et al., 1998). From this analysis, we illustrate the

limitations of the actual software in terms of texture strengths for

common experimental designs with a resolution of the order of 5�.

2. Theory

We start with a formal definition of the entropy and the L2-norm of a

probability density function.

Let ðX; �Þ be a probability space and let f : X ! R be a square

integrable probability density function. The entropy S and the L2-

norm k�k2 of f are defined by

S ¼ �
R
X

f ðxÞ ln f ðxÞ d�ðxÞ and F ¼ k f k2
2 ¼

R
X

f ðxÞ2 d�ðxÞ:

Let X be the orientation space SO(3) (cf. Morawiec, 2004). Then

there is a rotationally invariant probability measure �, called the

Haar measure, of the compact group SO(3). The ODF can be seen as

a probability density function defined on the probability space

(SO3; �). In this context the L2-norm of a square integrable ODF is

called its texture index.

First of all we note that because j f ðxÞ ln f ðxÞ j � f ðxÞ2 for f ðxÞ � 1

and j f ðxÞ ln f ðxÞ j � 1 for f ðxÞ 2 ½0; 1� the entropy is well defined for

the class of all square integrable probability density functions.

Furthermore, we notice that the relationship between the entropy

and the texture index might be completely investigated considering

monotonically increasing functions on X ¼ ½0; 1� only. More

precisely, we have the following first proposition.



Proposition 1: Let f be a square integrable probability density

function on an arbitrary probability space (X; �). Then there is a

square integrable, monotonically increasing probability density

function ~ff : ð½0; 1�; �Þ ! R such that Sð f Þ ¼ Sð ~ff Þ and k f k2¼k
~ff k2.

Here � denotes the Borel–Lebesgue measure (Halmos, 1950).

The proof is given as follows. Let f : X ! R be a simple function,

i.e. a function taking only a finite number of values f1 � f2 � . . . � fN.

Then we define a monotonically increasing function ~ff on ½0; 1� by

setting ~ff ðxÞ ¼ fi for

x 2
�Xi�1

j¼1

�½ f�1
ð fjÞ�;

Xi

j¼1

�½ f�1
ð fjÞ�

i
:

In particular, ~ff possesses the properties
R 1

0
~ff ðxÞ dx ¼ 1, Sð f Þ ¼ Sð ~ff Þ

and k f k2¼k
~ff k2. Using approximation by simple functions these

properties are generalized to the class of square integrable functions.

Next we exemplify our first proposition, which allows us to focus

our attention on the class of square integrable, monotonically

increasing probability density functions on [0; 1].

Let x1 2 ½0; 1� and 0 � y1 � y2. We define a monotonically

increasing probability density function fx1;y1
that takes only the two

values y1 and y2

fx1;y1
ðxÞ ¼

(
y1 0 � x � x1;
y2 x1 < x � 1:

Setting y2 ¼ ð1� x1y1Þ=ð1� x1Þ, we ensure
R 1

0 fx1;y1
ðxÞ dx ¼ 1, the

usual normalization of any probability density function. Now the

entropy and the L2-norm of fx1;y1
can be explicitly given in terms of x1

and y1:

Sðx1; y1Þ ¼ �x1y1 ln y1 � ð1� x1Þy2 ln y2

¼ �x1y1 ln y1 � ð1� x1y1Þ ln
1� x1y1

1� x1

;

Fðx1; y1Þ ¼ x1y2
1 þ ð1� x1Þy

2
2 ¼

1� 2x1y1 þ x1y2
1

1� x1

:

Fig. 1 completes the example and shows the negative entropy and the

logarithm of the L2-norm of the function fx1;y1
plotted as function of

x1 and y1. Both plots look very similar, only deviating from each other

for large values of x1.

Let us fix the L2-norm ~FF � 1. Then fx1;y1
has the L2-norm ~FF if and

only if x1 2 ½ð
~FF � 1Þ= ~FF; 1Þ and y1 ¼ ~yy1ðx1Þ ¼ 1� f½ð1� x1Þ=x1� �

ð ~FF � 1Þg1=2. Hence, for every x1 2 ½ð
~FF � 1Þ= ~FF; 1Þ there is an unique

probability density function ~ffx1
¼ fx1;~yy1ðx1Þ

¼ fx1;1�f½ð1�x1Þ=x1 �ð
~FF�1Þg1=2 that

has L2-norm ~FF. Simple calculations show that ~yy1ðx1Þ is monotonically

increasing for x1 2 ½ð
~FF � 1Þ= ~FF; 1Þ and ~yy2ðx1Þ ¼ ½1� x1 ~yy1ðx1Þ�=ð1� x1Þ

is monotonically decreasing. In Fig. 2 the paths y1 ¼ ~yy1ðx1Þ, or iso-F

lines, are plotted for different values of ~FF ¼ 1:01; 1:2; 2; 5; 20. The

second proposition states that the entropy of ~ffx1
increases mono-

tonically along these paths.

Proposition 2: Let ~FF � 1 and ~ffx1
¼ fx1;~yy1ðx1Þ

as described above.

Denote ~SSðx1Þ ¼ S½x1; ~yy1ðx1Þ� the entropy of ~ffx1
. Then ~SSðx1Þ is a

continuous, monotonically increasing function on [ð ~FF � 1Þ= ~FF; 1) with
~SS½ð ~FF � 1Þ= ~FF� ¼ � ln ~FF and limx1!1

~SSðx1Þ ¼ 0.

We give the following proof. Since ~yy1ðx1Þ ¼ 1� f½ð1� x1Þ=x1� �

ð ~FF � 1Þg1=2 is continuous on ½ð ~FF � 1Þ= ~FF; 1Þ the entropy ~SSðx1Þ is also

continuous. For the boundary point x1 ¼ ð
~FF � 1Þ= ~FF, we obtain

~yy1ðx1Þ ¼ 0 and hence,

~SS
~FF � 1

~FF

� �
¼ � ln F0:

Elementary calculations show that for x1 ! 1, we have

limx1!1
~SSðx1Þ ¼ 0.

In order to prove monotonicity, we show d ~SSðx1Þ=dx1 � 0. The

partial derivatives of Sðx1; y1Þ and Fðx1; y1Þ are calculated to

@1Sðx1; y1Þ ¼ �
1� y1

1� x1

þ y1 ln
1� x1y1

ð1� x1Þy1

;

@2Sðx1; y1Þ ¼ x1 ln
1� x1y1

ð1� x1Þy1

;

@1Fðx1; y1Þ ¼

�
1� y1

1� x1

�2

;

@2Fðx1; y1Þ ¼ �
2x1ð1� y1Þ

1� x1

:
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Figure 1
(a) Negative entropy �S and (b) logarithm of the L2-norm logðF Þ of fx1;y1

for
x1; y1 2 ½0; 1�.

Figure 2
The paths ~yy1ðx1Þ of constant L2-norm F.



The derivative d ~SS=dx1 ¼ dS½x1; ~yy1ðx1Þ�=dx1 is the directional deriva-

tive of S along the contour line of Fðx1; y1Þ ¼
~FF. Since the gradient of

F is orthogonal to the contour line, we obtain

d

dx1

~SSðx1Þ ¼ rS½x1; ~yy1ðx1Þ�

n
@2F½x1; ~yy1ðx1Þ�;�@1F½x1; ~yy1ðx1Þ�

o
¼ @1S½x1; ~yy1ðx1Þ� @2F½x1; ~yy1ðx1Þ�

� @2S½x1; ~yy1ðx1Þ� @1F½x1; ~yy1ðx1Þ�

¼
x1ð1� ~yy1Þ

ð1� x1Þ
2

�
2ð1� ~yy1Þ � ð1þ ~yy1 � 2x1 ~yy1Þ ln

ð1� x1Þ~yy1

1� x1 ~yy1

�
:

Since for all x1; y1 2 ð0; 1Þ we have x1ð1� y1Þ=ð1� x1Þ
2
� 0 and

2ð1� y1Þ

1þ y1 � 2x1y1

� 0 � ln
ð1� x1Þy1

1� x1y1

;

we conclude that d ~SSðx1Þ=dx1 � 0, which completes the proof.

We note that our second proposition immediately implies that

there is no functional relationship of entropy and L2-norm but that

the entropy may vary substantially for a given L2-norm. Since for a

fixed L2-norm ~FF of fx1;~yy1ðx1Þ
the minimum value ~yy1ðx1Þ of fx1;~yy1ðx1Þ

is a

strictly monotonically increasing function of x1, there is a strictly

monotonically increasing function ~xx1 : ½0; 1Þ ! R such that f~xx1ðy1Þ;y1

has texture index ~FF for all y1 2 ½0; 1Þ. Now our second proposition

implies that the entropy S½x1; ~yy1ðx1Þ� of f~xx1ðy1Þ;y1
is a monotonically

increasing function of y1 2 ½0; 1Þ. In particular we have for x1 ¼ ~xx1ðy1Þ

Sðx1; y1Þ ¼ �
ð ~FF � 1Þy1

~FF � 1þ ð1� y1Þ
2

ln y1 �
ð ~FF � y1Þð1� y1Þ

~FF � 1þ ð1� y1Þ
2

ln
~FF � b

1� b
:

ð1Þ

Up to now our demonstration concerned probability density func-

tions taking only two values. However, even under such restriction,

we found that probability density functions corresponding to any

(S;F) pair exist, with the lower bound of S � �lnF.

With our third proposition, we show that there are no square

integrable probability density functions corresponding to pairs (S;F)

with S< � lnF.

Proposition 3: Let f be a monotonically increasing probability

density function on [0; 1] taking only the three different values, y1, y2

and y3, with 0 � y1 � y2 � y3 and 0 � x1 � x2, such that

f ðxÞ ¼

(
y1 0 � x< x1;
y2 x1 � x< x2;
y3 x2 � x � 1:

Then there are monotonically increasing probability density

functions f� and fþ with minx2½0;1� f�ðxÞ � minx2½0;1� f ðxÞ and

minx2½0;1� fþðxÞ � minx2½0;1� f ðxÞ that take only two values, y1; y2

and y2; y3, respectively, and satisfy k f k1¼k f� k1¼k fþ k1,

k f k2¼k f� k2¼k fþ k2 and Sð f�Þ � Sð f Þ � Sð fþÞ. Our proof is an

application of our first proposition. Restricting f to [x1; 1], we can

apply the two-valued case. In particular, there are monotonic,

continuous functions ~yy2 : ½x1; 1� ! Rþ and ~yy3 : ½x1; 1� ! Rþ with

y1 � ~yy2 � ~yy3 such that for all ~xx2 2 ½x1; 1Þ the function

f~xx2
ðxÞ ¼

(
y1 0 � x< x1;

~yy2ð~xx2Þ x1 � x< ~xx2;
~yy3ð~xx2Þ ~xx2 � x � 1;

preserves the L1-norm and L2-norm, respectively. Moreover, by our

second proposition, we know that the entropy Sð~xx2Þ of f~xx2
decreases

monotonically when ~xx2 decreases. In the case that y1 ¼ ~yy2ð~xx2Þ the

function f� ¼ f~xx2
is a two-valued function that preserves the 1-norm

and the L2-norm, respectively, and has smaller entropy than f .

Focusing on the restriction of f to [0; x2], we analogously obtain a

function fþ that preserves the L1- and L2-norm, respectively, and has

larger entropy than f . Thus, our proof is completed.

We are now able to formulate our major result characterizing the

relationship between the entropy and the L2-norm of a probability

density function.

Proposition 4: Let f be a square integrable probability density

function and denote fmin ¼ minx2½0;1�f ðxÞ its minimum value. Then we

have the following relationship between the L2-norm F and entropy S

of f :

S � �
ðF � 1Þfmin

F � 1þ ð1� fminÞ
2

ln fmin �
ðF � fminÞð1� fminÞ

F � 1þ ð1� fminÞ
2

ln
F � fmin

1� fmin

:

ð2Þ

In particular we have

0 � S � � ln F: ð3Þ

Conversely, for every pair F � 1 and 0> S � � ln F of L2-norm and

entropy there is a corresponding probability density function f .

Actually, our second proposition and its explicit implication prove the

theorem for any function f defined by only two values. Applying the

third proposition, induction yields the proof of inequality equations

(2) and (3) for all simple functions. The general case is obtained by

approximation of any square integrable probability density function

with simple functions. It should be noted that a pair F � 1 and

0> S � � ln F of L2-norm and entropy does not uniquely determine

a probability density function f .

Although Fig. 1 suggests a very close relationship between the

entropy and the L2-norm of a square integrable probability density

function f , we have shown in our fourth proposition that for a fixed

L2-norm the entropy of f may vary between zero and the negative

logarithm of the L2-norm of f . As a rule of thumb, we conclude that

the entropy is close to zero if the minimum value fmin is close to one

and conversely that the entropy is close to the negative logarithm of

the L2-norm of f if f has large regions close to zero.

The region of all admissible combinations of the L2-norm and the

entropy of square integrable probability density functions interpreted

as the ODF space is illustrated in Fig. 3. In this figure one clearly sees

the lower bound for the entropy respecting equation (2) for different

minimum values of the ODF f, i.e. for fmin 2 f
2
3 ;

1
3 ; 0g. The lower

bound � ln F for the general case fmin � 0 is the smallest lower

bound. The most interesting point here contrary to previous obser-

vations (Chateigner, 2005) is that for values of the entropy S close to

0 any texture index value can exist, and that for a given value of the

texture index F the entropy S may vary between 0 and � ln F. Since
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Figure 3
The ODF space as seen from texture index and entropy.



our mathematical development is general and valid for any ODF it

remains to understand why almost always S ’ � ln F was observed

for real and simulated data by Chateigner (2005).

3. ODF reconstruction with simulated data

In order to clarify this last point, we generated a total of 13 synthetic

ODFs with values for texture index F and the entropy S as plotted in

Fig. 4. All these ODFs were constructed for triclinic crystal symmetry

with a ¼ b ¼ c and � ¼ � ¼ � ¼ 90� as the superposition of a

uniformly distributed component and a von Mizes–Fisher distributed

component centered at g0 ¼ f0; 0; 0g. From these ODFs, we calcu-

lated the f001g; f010g; f100g; f111g; f�1111g; f1�111g and f�11�111g pole figures

on a 5 � 5� grid. Applying the WIMV algorithm with minimum

convergence rate 0.1 to the pole figure data, we computed approx-

imations of the 13 synthetic ODFs. The results of the reconstruction

and a comparison with the original ODFs are given in Table 1. We

observe that the given pole figures are sufficiently well approximated

by the recalculated pole figures (RP0 � 0:5%), whereas the entropy

and the texture index of the recalculated ODFs are far away from the

initial values (see Fig. 4). One recognizes that the RP1 error becomes

larger for the ODFs with a sharper preferred component. This is due

to our restriction to a 5� 5� grid.

The texture index versus entropy plot 4 of the synthetic and

reconstructed ODFs clearly shows that they are not located on the

lower bound � ln F ¼ S, which is an empirical evidence that this

lower bound can generally not be used as a criterion to check the

goodness of fit of numerically reconstructed ODFs, as was suggested

by Chateigner (2005). Interestingly enough, texturation processes are

often developing texture components at the expense of the uniform

portion, thus rapidly stabilizing textures without a uniform portion.

In this case we can expect texture index–entropy combinations that

are located close to the lower bound.

Chateigner (2005) analyzed only strongly textured samples. The

corresponding ODFs plotted by Chateigner (2005, Figs. 5b and 6a

therein) do not contain uniform components, except for few samples

with small texture index F for which reconstruction discrepancies

overlap the presence of the uniform component. Fig. 5 verifies that

for these ODFs the pairs ðF; SÞ are located close to the lower bound

S ¼ � ln F.

As a global trend, samples with ODFs having arbitrary texture

index F and entropy S with� ln F � S � 0 exist. ODFs with a weakly

preferred smooth texture component and large uniform portion will
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Figure 4
(a) Some of the synthetic ODFs and (b) their texture index–entropy relationship
depicted as blue dots. The red dots represent the texture index–entropy
relationship of the WIMV-reconstructed ODFs. The numbers refer to the
enumeration of the synthetic ODFs starting in the upper-left corner and counting
anticlockwise.

Figure 5
F–S plot of the simulated ODFs (full circles) and of the lower bound (open circles) for (a) the simulated ODFs of this work and (b) the experimental ODFs of Chateigner
(2005).



be located close to small F and large S, while ODFs with large areas

close to zero will be located close to the lower bound � ln F. Finally,

ODFs with a large uniform portion but very sharp texture compo-

nents will have entropy S close to zero but a large texture index F.

Such samples will necessarily exhibit textured components with very

narrow half-width, which will require largely improved measurement

resolution, i.e. scanning grids with refined meshes, and appropriate

software which is adapted for their reconstruction. This is why we

observe a larger deviation of reconstructed data from the lower

bound (Fig. 5) for large texture indices than for small texture indices.

4. Conclusion

We have characterized the ODF space in terms of texture index and

entropy. We have demonstrated that this space is not confined to the

previously observed single continuous line S ¼ � ln F, but that this

line actually corresponds to a lower bound corresponding to ODFs

without a uniform component. In general ODFs can be located

between this lower bound and the upper bound 0, where the only

possible point on the upper bound is ðS;F Þ ¼ ð0; 1Þ for the uniform

texture. Simulated and experimental data taken from a previous work

confirm our findings.
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Table 1
Simulated ODFs and ODFs reconstructed with the WIMV algorithm of Beartex,
and reconstruction parameters.

Simulated ODF Recalculated ODF Error

Min. Max. F S Min. Max. F S RP0 RP1
ID (m.r.d.) (m.r.d.2) (m.r.d.) (m.r.d.2) (%) (%)

1 0.57 3.6 1.33 �0.135 0.81 1.87 1.02 �0.009 0.30 0.31
2 0.14 6.8 2.02 �0.350 0.57 4.19 1.17 �0.070 0.32 0.29
3 0.21 14.6 3.89 �0.736 0.24 11.20 2.19 �0.342 0.46 0.26
4 0.31 29.8 7.30 �1.076 0.10 26.52 5.36 �0.815 0.49 0.22
5 0.42 55.1 11.45 �1.186 0.13 51.72 9.37 �1.047 0.42 0.40
6 0.55 93.5 15.36 �1.116 0.23 88.43 12.76 �1.014 0.58 0.53
7 0.67 147.7 18.00 �0.941 0.29 136.26 14.79 �0.856 0.62 0.71
8 0.77 219.8 18.80 �0.730 0.35 195.38 15.00 �0.659 0.63 0.96
9 0.85 311.7 17.93 �0.531 0.37 268.74 13.91 �0.473 0.54 0.96
10 0.90 427.0 16.02 �0.370 0.30 381.86 12.91 �0.336 0.53 1.06
11 0.94 571.3 13.71 �0.250 0.34 471.96 9.71 �0.216 0.73 3.80
12 0.96 752.3 11.43 �0.165 0.43 638.02 7.38 �0.136 0.87 6.64
13 0.98 980.7 9.39 �0.107 0.44 799.64 6.36 �0.084 0.71 8.16


