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IN a recent paper, Jones1 suggests to revisit the use of the con-
cept of ‘‘superposed crystallographic textures.’’ This introduc-

tion is motivated by the calculation, for a textured sample with a
given randomly oriented volume fraction, of the maximum pole
density value of the textured component from the minimum and
maximum values of the ‘‘superposed’’ ODF. In particular, the
author wants to address the following:

(1) reintroduction of the concept of multi-component super-
posed ODFs, specifically for textures comprising a random
component,

(2) demonstration that the volume fraction bounds of a
randomly-oriented texture component can be quantified from
the superposed ODF without forcing the textured component to
conform to a predetermined function,

(3) quantification of the pole density intensity bounds of the
textured component from the intensities in the superposed ODF,
and

(4) illustration of one application of these developed for-
malisms.

Unfortunately, the author’s point (1) is apparently raised by a
misinterpretation of previous papers by Virnish et al.2 and
Lücke et al.3 What Jones calls ‘‘superposed ODF’’ is in fact
the representation of an ODF (or f(g)) by the super-
position of functions, which is currently used in quantitative
texture analysis. This is misleading as for a single-phase material
there is no necessity to introduce several ODFs, particularly be-
cause of the definition itself of the ODF:
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which is bound to 100% of the material volume. This, as a first
consequence, implies that f(g) is normalized to 8p2, and not to
2p as denoted by Eq. (5) of the manuscript. The former nor-
malization factor comes from the integration of f(g) over the
three Euler angles that define the orientation of a crystallite,
g5 {a,b,g}, in the orientation space. The 2p factor and Eq. (5)
are for the pole figure normalization (and not for f(g)).

Unfortunately, point (2) undergoes the previous misinterpret-
ation. As f(g) is a density, one has to integrate over a given
orientation range Dg to obtain a volume ratio. For a random
sample, f(g)5 1 m.r.d. whatever g, and then the integral over all
gs gives 8p2, meaning DV/V5 100%. For a sample containing a
random part 1�x (e.g., 20% of the volume), then x is the
volume associated with the textured part (80%), whatever its
distribution shape, and Jones’ Eq. (3) should read:
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which is a quite different equation that does not allow a rea-
soning on only one g value like in Jones’s Eq. (9). These equa-
tions are not forcing any predetermined function for f(g), and
give rise to distribution densities different from the one illus-
trated in Jones’s Fig. 1,1 which is a pole figure. One has to
understand here that a pole figure point depends on several g
values of f(g) as the fundamental equation of texture analysis
that relates pole figures and the ODF4 implies an integral of f(g)
on a given path. Then, the modification of a single pole figure as
proposed in Fig. 1 and related equations is false, because it does
not include the modifications of all the other pole figures linked
by f(g).

We agree with the author that ‘‘the maximum bound for x
[max(x)] is 1, yielding a random fraction component (1�x) of 0’’
for a two-component texture in which one is a random part.
This specific case for x stands for a fully textured volume with
f1(g) as the crystallite distribution. However, the author then
conludes that ‘‘the minimum bound of x [min(x)] can be solved
from Eq. (6) using the minimum value of the superposed ODF,
min(f0).’’ This cannot be true if one wants the material’s volume
retained at 100%. The minimum x value for the textured com-
ponent is min(x)5 0, meaning a perfectly randomly oriented
sample, with 1�x5 1. Consequently, unless the author’s ideas
have not been illustrated correctly, Jones’s developments and
discussion are no longer valid.
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