

AC susceptibility in weak ferromagnetic R₂CuO₄ cuprates

M. Tovar ^{a,b}, X. Obradors ^a, F. Pérez ^a, S.B. Oseroff ^c, D. Chateigner ^d, P. Bordet ^d, J. Chenavas ^d, P. Canfield ^e and Z. Fisk ^e

We present ac susceptibility measurements for R_2CuO_4 with R=Gd, Tb, Dy, Ho, Er and Tm, in the temperature range from 4 to 300 K. The frequency dependence of the in-phase $\chi'(\omega, T)$ and out-of-phase $\chi''(\omega, T)$ is analyzed as a function of temperature.

Antiferromagnetic order [1] is a common characteristic of the rare-earth cuprates, R₂CuO₄. For the light rare earths (R = Pr, Nd, Sm and Eu) electron doping through Ce substitution leads to high-T_c superconductivity [2]. For heavier rare earths, instead, a weak ferromagnetic (WF) component is present [3-5] and, up to now, it has not been possible to induce superconductivity in these materials. The dc magnetization [3] reflects a history-dependent magnetization of the Cu lattice and an associated internal field polarizing the paramagnetic rare-earth ions. The onset of WF in Tb₂CuO₄ has been found to be accompanied with spin-glass-like characteristics [5], such as differences between the field-cooled (FC) and zero-field-cooled (ZFC) magnetization and a logarithmic time decay of the remanent magnetization. We present here an analysis of the frequency dependence of the real (in-phase) and imaginary (out-of-phase) components of the ac susceptibility, which further characterizes the spinglass-like features associated with the weak ferromagnetism of these systems.

Ceramic samples of $R_2\text{CuO}_4$, with R=Tb, Dy, Ho, Er, and Tm, were prepared from the oxides under high pressure (8–9 GPa) in a belt type apparatus at temperatures ranging from 800 to $1200\,^{\circ}\text{C}$. X-ray diffraction showed in all cases the basic T' structure [6] but showed many extra weak peaks that could be indexed as superstructure reflections. Details of the synthesis and structural studies will be published separately [7]. Single crystals of Gd_2CuO_4 were grown from a CuOP-PbO flux.

We have measured the real, $\chi'(\omega,T)$, and imaginary, $\chi''(\omega,T)$, parts of the ac susceptibility, in the temperature range 4.2 K < T < 320 K, using a Lake Shore Susceptometer operating at different excitation frequencies of the magnetic field, $\nu = \omega/2\pi = 10$, 111 and 1000 Hz.

A maximum of $\chi'(\omega, T)$ has been found for all the ceramic samples at temperatures varying from $T_{\text{max}} \approx 285 \text{ K}$ for R = Tb to $T_{\text{max}} \approx 260 \text{ K}$ for R = Tm. Subsequent maxima were observed at lower temperatures

Fig. 1. Real and imaginary parts of the ac susceptibility, measured at two different frequencies for a ceramic sample of ${\rm Tb_2CuO_4}$ with $H_{\rm exc}=10~{\rm G}$.

indicating either spin reorientation transitions or rareearth magnetic order. The overall magnetic behavior is similar to that found [3,8] for $\mathrm{Gd}_2\mathrm{CuO}_4$, where weak ferromagnetism was first reported for these T'cuprates.

The peaks in $\chi'(\omega, T)$ have associated anomalies in $\chi''(\omega, T)$, as shown in figs. 1 and 2 for $\mathrm{Tb}_2\mathrm{CuO}_4$ and $\mathrm{Gd}_2\mathrm{CuO}_4$. In the case of R = Dy, Ho, Er and Tm, the anomalies were less intense and we were not able to detect the out-of-phase component.

For $T \gg T_{\text{max}}$ the ac and dc susceptibility measurements [3-5] are in agreement, following a Curie-Weiss law with effective magnetic moments close to the free-ion values for \mathbb{R}^{3+} .

For R = Tb and heavier rare earths, $\chi'(\omega,T)$ decreases below $T_{\rm max}$, reaching for $T\ll T_{\rm max}$ the same Curie-Weiss dependence found at high temperatures. For ${\rm Gd_2CuO_4}$, $\chi'(\omega,T)$ also presents a maximum but it remains significantly higher than $\chi_{\rm dc}(T)$ at lower temperatures.

As shown in fig. 1, the frequency dependence of $\chi'(\omega, T)$ is almost negligible for $T > T_{\text{max}}$, increases at lower temperatures, and becomes again independent

^a Instituto de Ciencia de Materiales, 01893 Bellaterra, Spain

^b Centro Atómico Bariloche, 8400 Bariloche, Argentina

^c San Diego State University, San Diego, CA 92182, USA

^d Laboratoire de Cristallographie, CNRS, 38042 Grenoble, France

^e Los Alamos National Laboratory, Los Alamos, NM, USA

Fig. 2. Real and imaginary parts of the ac susceptibility measured for a $\rm Gd_2CuO_4$ single crystals, with $\rm \it H_{exc}=1~G$, as a function of temperature for two different frequencies.

of ω . The out-of-phase component $\chi''(\omega, T)$ presents a broad maximum as a function of temperature whose shape and position are strongly frequency dependent. $\chi''(\omega, T)$ drops to zero at temperatures close to those where $\chi'(\omega, T)$ becomes frequency independent. At high temperatures, $\chi''(\omega, T)$ is an increasing function of ω , and a decreasing one at low temperatures.

This behavior may be described in terms of relaxation processes characterized by a spectral distribution of relaxation times $P(\tau)$. For a single relaxation time, $P(\tau) = \delta(\tau - \tau_0(T))$, the ac susceptibility is given by $\chi'(\omega, T) = \chi_{\infty}(T) + (\chi_0(T) - \chi_{\infty}(T))/(1 + \omega^2 \tau_0^2(T))$ and $\chi''(\omega, T) = \omega \tau_0(T)(\chi_0(T) - \chi_{\infty}(T))/(1 + \omega^2 \tau_0^2(T))$, where $\chi_0(T)$ and $\chi_{\infty}(T)$ are the low and high frequency limits of $\chi'(\omega, T)$, respectively. The imaginary part $\chi''(\omega, T)$ tends to zero in both limits and presents a maximum for $\omega = \tau_0^{-1}(T)$. For a distribution of relaxation times, $\chi''(\omega, T)$ becomes a flattened function of frequency, but its maximum value still corresponds to the average or dominant relaxation rates in the system $\tau(T)$.

The available excitation frequencies in our ac measurements correspond to a time window 10^{-3} s < τ < 10^{-1} s. From our experimental results we conclude that $\bar{\tau}(T) < 10^{-3}$ s for $T > T_{\rm max}$ and coincides with our time window at $T \approx 250$ K for Tb₂CuO₄ and at $T \approx 200$ K for Gd₂CuO₄. At lower temperatures, the dominant relaxation times rapidly increase and then $\chi'(\omega, T)$ becomes again frequency independent, while $\chi''(\omega, T)$ goes to zero. This observation is in agreement with the logarithmic decay of the remanent magnetization observed [5] for Tb₂CuO₄ at T = 100 K, i.e. below the temperature range where strong relaxation is observed in our ac susceptibility measurements.

The adiabatic susceptibility $\chi_{\infty}(T)$, measured for $T \le 150$ K, follows a Curie-Weiss law for R = Tb and the heavier rare earths. This behavior and the observation of hysteresis loops with a slowly varying remanent magnetization [5] indicates the freezing of the Cu moments. Then, only the rare-earth moments are able to

respond to the excitation of the oscillating magnetic field.

For $\mathrm{Gd}_2\mathrm{CuO}_4$, the low-temperature limit of $\chi_\infty(T)$ resembles also a Curie-Weiss law, but it corresponds to an effective magnetic field much larger than the applied ac excitation field H_{exc} .

As mentioned above, at a second characteristic temperature, $T_{\rm L}$, some of these materials show a spin reorientation transition [3,8] that suppresses the WF. We have found that $T_{\rm L}$ varies from ≈ 20 K for R = Gd to ≈ 10 K in the cases of Tb and Dy. For R = Ho, Er and Tm, we have not found indications of this transition down to 4.5 K.

In conclusion, we have identified a high-temperature region where the ac susceptibility presents characteristics of spin-glass materials. The observed behavior may be described in terms of a distribution of relaxation times whose average value varies as a function of temperature. Above T_{max} the relaxation is fast and the whole system behaves paramagnetically. In an intermediate temperature range, $\bar{\tau}(T)$ varies in the time domain of our ac measurements $(10^{-1}-10^{-3} \text{ s})$ and both $\chi'(\omega, T)$ and $\chi''(\omega, T)$ present a strong frequency dependence. Finally, the Cu moments become frozen at lower temperatures (T < 150 K) for R = Tb and heavier rare earths. For R = Gd, instead, the freezing is not complete. The analysis of the interaction of the WF component of the Cu sublattice with the rare-earth magnetic moments at low temperatures and its effects on the observed transitions at T_1 is presently under way and will be published separately.

We acknowledge partial support from DGICYT (Spain) under the Sabathical Program and project PB-89-71, from PICS (CNRS/SCIC collaboration program), and from CONICET and Fundación Artorchas (Argentina).

References

- J.T. Markert, Y. Dalichaouch and M.B. Maple, in: Physical Properties of High Temperature Superconductors I, ed. D.M. Ginsberg (World Scientific, Singapore, 1989) p. 266.
- [2] Y. Tokura, H. Takagi and S. Uchida, Nature 337 (1989) 345.
- [3] J.D. Thompson, S-W. Cheong, S.E. Brown, Z. Fisk, S.B. Oseroff, M. Tovar, D.C. Vier and S. Schultz, Phys. Rev. B 39 (1989) 6660.
- [4] H. Okada, M. Takano and Y. Takaeda, Phys. Rev. B 42 (1990) 6813.
- [5] M. Tovar, X. Obradors, F. Perez, S.B. Oseroff, R.J. Duro, J. Rivas, D. Chateigner, P. Bordet and J. Chenavas, J. Appl. Phys., in press.
- [6] H. Müller-Buschbaum and W. Wollschläger, Z. Anorg. Allg. Chem. 414 (1975) 76.
- [7] P. Bordet et al., Proc. M²S-HTSC III Conf., Kanazawa, Japan (22-26 July 1991) in press.
- [8] S.B. Oseroff et al., Phys. Rev. B 41 (1990) 1934.