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Abstract. We give the necessary formulas to extract pure magnetic diffraction signals from the 
difference spectra between two neutron texture measurements, one operated with a sample at zero-
magnetic field, and the other under a magnetic field. This enables us to calculate the total-magnetic-
scattering ODF, and the polarisation-magnetic-scattering ODF, of an iron sample. Using the 
developed approach it is shown that under some hypotheses one can describe the three dimensional 
orientation of the magnetic moments in the sample under a given magnetic field. 
 
Introduction 

 Measuring magnetic pole figures using neutron diffraction is not new, but only few attempts 
of refining magnetic ODFs were carried out up to now. Among these the most successful work 
remains by Brisan et al. [1] using entropy maximisation to refine the ODF of a Fe(Si) compound, 
without consequent further development to our knowledge. However, the knowledge of the 
anisotropic distribution of magnetic moments in a sample has been proved to be of crucial impor-
tance to predict the macroscopic magnetic behaviour, for instance in ferromagnetic samples [2]. 
Anisotropic magnetic macroscopic behaviours are usually probed using magnetisation curves 
measured in two perpendicular macroscopic directions of the samples [3, 4]. However this kind of 
measurement is intrinsically subjected to strong biases if the sample magnetic moments distribution 
does not respect some symmetry, adapted to the magnetisation measurement. The magnetic moment 
distribution characterisation becomes then a prerequisite in order to check the validity of 
magnetisation measurements for a given sample-measurement configuration. 
 In this work we illustrate the capability of nonpolarised neutron beams in giving access to 
the spatial distribution of magnetic moments of a Fe sample subjected to a 0.3 T static magnetic 
field. The theoretical background of the methodology is described, and total-and polarisation 
magnetic-scattering ODFs refined to calculate the magnetic moment distribution.  
 
Theoretical 

Measured pole figures. For neutron diffraction, we observe pole figures, which are 
composed of a nuclear (n) and a magnetic (m) part, and in the pole figure space it writes, in zero-
field or under application of an external magnetic field B

r
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If the crystallites are not free to rotate under the magnetic field, e.g. at solid state without phase 
transformation under field, we can assume: 
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This latter equation is of interest, because it can serve the determination of the magnetic part from 
an independent determination of the nuclear part, e.g. using x-ray diffraction.  
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�ormalisation conditions of the pole figures. If complete pole figures are measured like 
with neutron experiments, the total intensity received on a given pole figure is: 
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 for crystallites not free to rotate, or: 
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Hence the normalisation factors for the pole figures, or random intensities are: 
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�uclear part determination. If one can find neutron peaks without magnetic contribution 

(only nuclear), several nuclear (crystallographic) characteristics can be determined: 
 

- The full ODF of the nuclear part, or crystallographic texture (nODF = fn(g)), can be 
determined, provided enough ODF space coverage is brought, by the only nuclear pole 
figures information. In this case, fn(g) can be used to recalculate all the )y(In

h

r
r contributions, 

and subtract them from )B,y(I
h

rr
r  to obtain the purely magnetic contributions. This implies 

the knowledge of the nuclear normalising factors of pole figures, rn,
h
I r . These latter can be 

obtained using: 
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- The following relation stands on each of these peaks: 
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factors and experimental calibrations of the instrument (This is then in fact the ratio between the 
lines of a powder pattern). 
 
The first approach works whatever the nuclear texture of the sample, and whatever the coverage of 
the pole figures (provided enough is provided to ensure the calculation of fn(g)), while the second 
only works for a random crystallographic texture since the integral on y

r
 is constant only if all the 

poles have been measured, and in the case of complete pole figure measurements. 
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�ormalisation conditions of the ODFs. We correlatively obtain the two ODFs, fn(g) and 

fm(g), that obey the normalisation conditions: 
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Absence of external magnetic field. If B = 0,  (1) and (2) become respectively: 
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In (5), the ratio between rn,

h
I r  and rm,

h
I r  is given by any program able to calculate magnetic and 

nuclear powder patterns (Fullprof, Jana, GSAS …). 
 
Whether ,0)y(Im

h

r
r  is anisotropic or not depends on many factors, on the magnetic moments 

configuration in the unit cell, on the crystallographic texture, on the magnetic behaviour 
(spontaneous magnetic polarisation), on the sample history … For now we can dissociate four 
different initial sample configurations in zero external field (Table 1). 

 
Initial Sample Random texture Textured 

Magnetic Isotropy Isotropic Textured isotropic 
Magnetic Anisotropy Isotropised Anisotropic 

Table 1: Definitions of sample configurations in absence of applied magnetic field 

Application of an external magnetic field. The application of a field B
r
 induces eventually 

a reorientation of magnetic moments in the sample, or magnetic polarisation, which is seen using 
neutron diffraction as variations of intensities, )B,y(Im

h

rr
r∆ , in the pole figures, and (1) becomes: 
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We will call these variations in intensities of the pole figures under magnetic field, magnetic-
scattering polarisation pole figures. These variations are positive or negative. Then, compared to 
(1), the measured pole figure will exhibit y-ranges where intensities will appear reinforced, and 
some other y-ranges for which the intensities will be lowered. 
 
Since the applied field can reorient the magnetic moments or destroy their initial orientations, and 
depending on the magnitude of the applied field, each initial state of Table 1 splits into 2 possible 
configurations (isotropic or not) after the field is applied. For instance, an initially ferromagnetic 
isotropic sample will remain isotropic after magnetic field application if this field is smaller than the 
coercive field, while will become magnetically anisotropic if B > Bc (Table 2), resulting in eight 
possible sample histories, but only four sample final states after field application. 
 

Initial Sample Random texture Textured 
Magnetic Isotropy Isotropic 

Magnetically anisotropic 
Textured isotropic 

Anisotropic 
Magnetic Anisotropy Isotropic 

Magnetically anisotropic 
Anisotropic 

Textured isotropic 

Table 2: Resulting possible sample states after application of a magnetic field 
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Magnetic part determination. There are two different magnetic pole figures one can 

obtain: the magnetic-scattering polarisation pole figures, )B,y(Im
h

rr
r∆ , and the total magnetic-

scattering pole figures, )B,y(Im
h

rr
r , with: 
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 Magnetic polarisation pole figures. Under magnetic field, the magnetic-scattering polari-
sation pole figures can be obtained straightforwardly by taking the difference between (6) and (4): 
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One can see straightforwardly, that if the magnetic field imposes crystallite reorientations, then: 
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and (8) becomes: 
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so that we need to know how the crystals reorient under a magnetic field. This is hopefully often 
negligible. If not, this is another matter not dealt here. 
 
 Total magnetic-scattering pole figures. The total magnetic-scattering contribution to a 
given pole figure (7) requires the determination of ,0)y(Im

h

r
r  and )B,y(Im
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rr
r∆ . The latter term is 

obtained using (8). But the former term determination needs to distinguish between two possible 
initial magnetic states: 
 
  Initially magnetically isotropic sample 
 
In this case we get y  A,constant,0)y(,0)/Iy(I m

h
n
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rr ∀== . The constant A can be calculated from a 

powder pattern measured in the same conditions as the pole figures (or refined in a Rietveld 
approach if a software is available to treat both magnetic and nuclear patterns and ODFs), for 
instance using Fullprof. Then, dividing (1) by ,0)y(Im
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scattering contribution from the measured pole figures and A. 
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  Initially magnetically anisotropic sample 
 
In this case rm,

h
m
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Furthermore, if one uses the fact that: 
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without solid state crystal reorientation, )B,y(I,0)y(I n
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From magnetic-scattering to the MODF and magnetic moment distributions.  

 
The magnetic-scattering pole figures (polarisation and total) are a direct consequence of the 

interaction of neutrons with magnetic moments (in their reoriented or initial states respectively). 
However, the magnetic moment distribution is not directly given by the magnetic-scattering pole 
figures. One needs to take into account how the magnetic moment scatter neutrons. The neutron-
magnetic moment interaction involves a vector product, meaning that for an intensity detected at g, 
the real magnetic moment orientation is at 90° from g, taking into account time reversal symmetry 
relationships. In the case of magnetic moments linked to crystallographic directions, this is quite 
straightforward [2], but this is not unfortunately always the case, as for a soft magnetic material. 
However, magnetic unit-cell parameters are usually linked to the unit-cell of the nuclear part of the 
sample, and once enough magnetic pole figures )B,y(Im

h

rr
r  have been extracted, fm(g) can be refined 

using the rotation part of the magnetic space group, as for a classical crystallographic f(g), in any 
QTA software. We used here the tetragonal magnetic representation in order to account for the 
dissociation of [100] and [001] directions, to which the magnetic moments can be aligned. 
 
Experimental 
 
 We used the newly developed curved area position sensitive detector of the D19 beamline 
for our measurements [5]. This detector has the peculiarity of a χ-equivalent opening angle of 30° 
on 120° in 2θ, which strongly economises measuring time (only 288 sample orientations are 
necessary to cover all complete pole figures). Furthermore the D19 beamline is located close to the 
ILL reactor, with a large incident flux on the sample. Taking these technical advantages into 
account, it becomes feasible to operate two successive QTA measurements, one without applied 
magnetic field on the sample, and the other with a field of 0.3 T. We developed a sample holder, 
which enables to apply the magnetic field without dismounting the sample, and which is fixed in the 
sample reference frame when this latter rotates in the Eulerian cradle. The moderate applied field 
magnitudes (provided by the insertion of a Nd-Fe-B permanent magnet) however allow at the 
present time to characterise only samples under low fields, and this is the reason why we measured 
an iron cylinder.  
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Results and discussion 
 

From the two measurement sets (without and with applied field, Figure 1), we applied the 
previously described procedure to carry out total and polarisation magnetic-scattering complete 
{110} pole figures. The magnetic form factors are such that only the {110} line exhibits enough 
magnetic information in our conditions. At zero field (Figure 2a) the sample exhibits a strong signal 
with a moderate <110> crystallographic texture. When a field of 0.3 T is applied (Figure 2b), the 
maximum of the {110} experimental pole figure decreases significantly at the benefit of the pole 
figure equator. This is coherent with a magnetic field applied along the sample cylinder axis (ZS, 
centre of the pole figures), to which magnetic moments tend to align, giving rise to more magnetic 
diffraction signal at 90° from it. The difference {110} pole figure illustrates this more explicitly 
(Figure 2c), with negative differences on its centre and positive values on its equator.  

 
We then calculated the random magnetic contribution (A) of the isotropic magnetic sample 

using Fullprof (Figure 2d), using the sum of all diagrams measured at all the sample orientations, 
taking into account the D19 instrument resolution characteristics. This random magnetic 
contribution provides the possibility to dissociate nuclear and magnetic contributions at zero field, 

,0)y(I and ,0)y(I m
h

n
h

rr
rr  respectively.  

 
These latter pole figures were used to refine the corresponding ODFs, fn(g) and fm(g), using 

the bcc crystal symmetry and the orthorhombic magnetic symmetries respectively, and the WIMV 
algorithm of Beartex [6]. In order to refine fm(g), we declared the overlaps refined by Fullprof to 
take account of the multiplicity of the {110} magnetic pole figure. The nuclear <110> fibre texture 
(Figure 2e) culminates at 1.32 mrd (fnmax(g)=1.8mrd, fnmin(g)=0.61mrd, F2=1.03mrd2, RP0=1.42%), 
and the fibre axis is aligned with ZS, as the sole textured component (Figure 2f). Since in iron the 
easy axis direction for magnetisation is <100>, the actual <110> fibre does not correspond to an 
easy magnetisation configuration. Consequently, the total normalised magnetic-scattering pole 
figures of the main magnetic unit-cell axes (Figure 2g) do not show a strong reorientation of 
densities, and exhibit a maximum of 1.32 mrd only on the pole figures, but a larger ODF maximum 
value (fnmax(g) = 2.3mrd, fnmin(g) = 0.64mrd, F2 = 1.03mrd2, RP0 = 0.24%).  

 
 

 a)        b) 
 
Figure 1: One 2D Debye-Scherrer pattern for one sample orientation without field (left) and difference 
pattern for the corresponding sample orientation (right). 
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Figure 2: {110} pole figures at zero field (a), under 0.3 T (b) and difference (c). Fit of the sum of all 
diagrams at zero field using the orthorhombic magnetic sub-group in Fullprof (d), and WIMV recalculated-
normalised nuclear {110} pole figure (e). Inverse nuclear pole figure for the cylinder sample axis direction 
(f) and WIMV recalculated-normalised magnetic-scattering contribution for the main orthorhombic axes (g). 
Recalculated-normalised magnetic-scattering polarisation pole figures for the positive (h) and negative (i) 
parts of the difference pole figures, and corresponding positive {001} magnetic-scattering pole figure 
illustrating the magnetic moment reorientation (j). 
 

From the magnetic-scattering polarisation pole figures we refined the magnetic polarisation 
ODF, ∆fm(g). Since the magnetic-scattering difference pole figures are showing positive and 
negative values, we divided them into their positive and negative zones, )B,y(I m

h

rr
r+∆  and )B,y(I-m
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r∆  

respectively, assigning zeros to the negative cells of )B,y(I m
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and )B,y(I m-
h
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r∆  we refined the magnetic-scattering polarisation ODFs, ∆f+m(g) (fnmax(g) = 93mrd, 

fnmin(g) = 0mrd, F2 = 12.4mrd2, RP0 = 6.83%) and ∆f-m(g) (fnmax(g) = 6.1mrd, fnmin(g) = 0.04mrd, 
F2=2.70mrd2, RP0 = 0.00%) in Beartex, which gave back the normalised )B,y(P m

110

rr+∆  and 

)B,y(P m
110

rr−∆  pole figures (Figure 2h and i resp.). These latter clearly show the reoriented part of the 
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magnetic signal with a large density created in the centre of )B,y(P m
110

rr−∆  indicating departure of 

intensities in this area to reach the periphery of )B,y(P m
110

rr+∆ , both pointing toward magnetic moment 
alignment with ZS. The maximum densities observed on these latter pole figures somehow measure 
the strength of the intensity reorientations, as also seen from texture indexes and ODF maxima. 
Most importantly, since the diffracted signal reveals magnetic moments located at 90° from it, one 
can search in this case a reflection at this angle from 110, which is for instance 001 in this space 
group. The )B,y(P m

001

rr+∆  (Figure 2j) then reveals directly the reoriented magnetic moments 
distribution, which in this case points a 9.4 mrd density of the reorientation. Interestingly in this 
case one can see a slight but significant deviation of these magnetic moments with respect with ZS 
(<110> crystallographic fibre axis), probably due to the difficulty to control our magnetic field 
application.  
 
Conclusions 
 
 We have shown the possibility of working out directly, using difference pole figures, the 
visualisation of magnetic moment reorientation, using classical ODF refinement methods. The 
measurements need optimised neutron beams and detecting tools in order to work out two texture 
measurement sets in reasonable times, for revealing the magnetic signals accurately using 
nonpolarised neutrons. Using this approach, the total magnetic-scattering ODF can be accessed, but 
also the magnetic-scattering polarisation ODF. Magnetic moments distribution and reorientation 
can be detailed quantitatively in three dimensions. 
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