ANISOTROPIC CRYSTALLITE SIZE ANALYSIS OF TEXTURED NANOCRYSTALLINE SILICON THIN FILMS PROBED BY X-RAY DIFFRACTION

<u>M. Morales</u>*, Y. Leconte, R. Rizk Laboratoire d'Etudes et de Recherche sur les Matériaux - ENSICAEN, F-14050 Caen

D. Chateigner

Laboratoire de Cristallographie et Sciences des Matériaux-ENSICAEN, F-14050 Caen

* magali.morales@ismra.fr

Introduction

She new "combined" x-ray technique is used, which is able to characterise quantitatively:

- texture
- structure (cell parameters)
- anisotropic crystallite shapes
- film thickness

Samples are nanocrystalline silicon films, grown by reactive magnetron sputtering

Subscription Crystallographic results are correlated to refraction indexes and optical pseudo-gap

X-rays experiments

4 - circles diffractometer

+

Curved Position Sensitive Detector

Cu K_{α} radiation, Graphite monochromator, calibration: LaB₆ scans: $\omega = 14.25^{\circ}$ (111 Si reflection), $0 \le \chi \le 35^{\circ}$, $\Delta \chi = 5^{\circ}$

Samples

Silicon thin films deposition by reactive magnetron sputtering:

- by power density 2W/cm²
- \clubsuit total pressure: $p_{total} = 10^{-1}$ Torr
- \clubsuit plasma mixture: H₂ / Ar, pH₂ / p_{total} = 80 %
- ♦ temperature: 200°C
- \Rightarrow substrates: amorphous SiO₂ (a-SiO₂) (100)-Si single-crystals

target-substrate distance (d)

- a-SiO₂ substrates:
- (100)-Si:

d = 4, 6, 7, 8, 10, 12 cm films A, B, C, D, E, F d = 6, 12 cm films G, H

Typical refinement

Measured: dots, simulated: lines broad, anisotropic diffracted lines, textured samples

Refinement Results

			RX	Anisotropic sizes (Å)			Texture parameters			Reliability factors (%)			
Sample	d (cm)	a (Å)	thickness				Maximum	minimum	Texture index	RP ₀	R _w	R _B	R _{exp}
			(nm)	<111>	<220>	<311>	(m.r.d.)	(m.r.d.)	F ² (m.r.d ²)				
A	4	5.4466 (3)		94	20	27	1.95	0.4	1.12	1.72	4.0	3.7	3.5
В	6	5.4439 (2)	711 (50)	101	20	22	1.39	0.79	1.01	0.71	4.9	4.3	4.2
С	7	5.4346 (4)	519 (60)	99	40	52	1.72	0.66	1.05	0.78	4.3	4.0	3.9
D	8	5.4461 (2)	1447 (66)	100	22	33	1.57	0.63	1.04	0.90	5.5	4.6	4.5
Ε	10	5.4462 (2)	1360 (80)	98	20	25	1.22	0.82	1.01	0.56	5.0	3.9	4.0
F	12	5.4452 (3)	1110 (57)	85	22	26	1.59	0.45	1.05	1.08	4.2	3.5	3.7
G	6	5.4387 (3)	1307 (50)	89	22	28	1.84	0.71	1.01	1.57	5.2	4.7	4.2
Н	12	5.4434 (2)	1214 (18)	88	22	24	2.77	0.50	1.12	2.97	5.0	4.5	4.3

Mean anisotropic shape

Schematic of the mean crystallite shape for Sample D represented in a cubic cell, as refined using the Popa approach and exhibiting a strong elongation along <111> (see Table).

Texture evolution with d

Films on a-SiO₂ substrates:

• overall texture strength almost unaffected by d (F^2 around 1.2 m.r.d.² at maximum), but texture components strongly influenced:

- smallest distances (Sample A) favours <110> orientation
 - with minor <100> and <124> components
- <110> orientation is destabilised for larger d's
- <110> component removal accompanied by a slight tilt of <100> and the appearance of a large <221> like component
- progressive shift of <221> like component towards <111> for larger d's (Samples B to F)
- no pure <111> orientation is observed

Films on (100)-Si substrates:

- stabilisation of single <100> component for all d's
- heteroepitaxial growth:
 - [100]-film // [100]-substrate
 - native a morphous SiO_2 layer etched by hydrogen species of the plasma
- no <111> orientation is observed

- a_{Si} in films always larger than a_{Si} in bulk
- ODF maxima larger using (100)-Si substrates

Profilometry versus XRD thickness

Samples	d (cm)	Profilometry	RX thickness (nm)	
		Thickness (nm)		
A	4	700		_
B	6	1350	711 (50)	high
С	7	1530	519 (60)	porosity
D	8	1465	1447 (66)	
E	10	1470	1360 (80)	_
F	12	1208	1110 (57)	_
G	6	1350	1307 (50)	
Н	12	1200	1214 (18)	

Optical measurements: refractive indexes and pseudo-gap

μ-structure versus optical properties

♦ large minimum ODF values: small anisotropy expected, 60 % to 20 % of textured volume

 \clubsuit abrupt increase of the refractive index (n) for small d's then saturation

reflects the film compactness

 \clubsuit opposite evolution of n and E_{04}

relatively high density of microcavities inherent to the film porosity

Conclusions

- Preferred orientations, cell parameters and anisotropic crystallite sizes of nanocrystalline silicon thin films deposited on $a-SiO_2$ and (100)-Si substrates have been quantitatively determined.
- Strong texture variations are observed when the electrode distance and/or the substrate is varied.
- Texture variations are correlated to the anisotropic crystal growth
- Porosities are correlated to refractive indices