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1. Introduction

In this chapter, we will deal with very general things, that will serve later as a basis to
speak the same "language". The Chapter has three main goals:

- to understand why "classical" scans used by diffractionists, like θ-2θ or ω scans, are
not able to provide quantitative information about texture, and many times even not
qualitative information.

- to be able to interpret and draw pole figures of typical textures.
- to recognise why we need to calculate another object, called ODF, and not only pole

figures, in general.

Used variables:

dS Surface element of the Pole Sphere
a, b, c, αc, βc, γc Unit-cell parameters
a, b, c Unit vectors of the unit-cell
∆∆∆∆k Scattering vector
n Normal to the sample surface
" Spectrometer (Diffractometer) space
χ Polar angle in the diffractometer space
ϕ Azimuthal angle in the diffractometer space
# Pole figure space
ϑy Polar angle in the pole figure space
ϕy Azimuth of pole figures
hk! Miller indices
(hk!) Crystallographic plane hk!
{hk!} Crystallographic planes hk! and diffracting equivalents
[hk!] Crystallographic direction hk!
[hk!]* Crystallographic direction hk! of the reciprocal space
<hk!> Crystallographic direction hk! and diffracting equivalents
<hk!>* Crystallographic direction hk! and diffracting equivalents of the reciprocal

space
Lhk! Lotgering factor
p, p0 ratio entering the Lotgering factor for a textured and a random sample

respectively
h <hk!>* directions
y ϑy, ϕy direction in #
Ih(y) Direct pole figure
Ph(y) Normalised pole figure
KA Sample reference frame
(xA, yA, zA) Unit-vectors of the sample reference frame
XA, YA, ZA Sample axes aligned with xA, yA, zA respectively
[XYZ] Vector of the sample reference frame
(xB, yB, zB) Unit-vectors of the crystal reference frame
XB, YB, ZB Sample axes aligned with xB, yB, zB respectively
! Orientation space
g Set of three Euler angles defining one orientation
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dg Orientation element in the !-space
α, β, γ Euler angles in the !-space in the Roe-Matthies convention
ϕ1,Φ,ϕ2 Euler angles in the !-space in the Bunge convention
f(g) Orientation Distribution Function
dhk!, Inter-reticular distance between (hk!) planes
ω Angle between the incident beam and the sample surface: incidence angle
θ Angle between the incident beam and the scattering planes {hk!}: Bragg angle
δ Angle between the scattering planes and the sample surface
V Irradiated volume of the sample
dV(y) Volume of crystallites having h between y and y + dy
dV(g) Volume of crystallites which orientation is between g and g + dg

Abbreviations:

CPS Curved Position Sensitive detector
ESR Electron Spin Resonance
FWHM Full Width at Half Maximum
m.r.d. multiple of a random distribution
NMR Nuclear Magnetic Resonance
ODF Orientation Distribution Function
PSD Position Sensitive Detector
QTA Quantitative Texture Analysis
SEM Scanning Electron Microscope
TEM Transmission Electron Microscope

Notes

Vectors are noted by bold letters
Unless specified, diffraction means "normal diffraction" (opp. anomalous diffraction)
The sign ^ means the vector product

2. Qualitative aspects of crystallographic textures

Natural or artificial solids (rocks, ceramics, metals, alloys ...) are constituted by
aggregates of grains of different phases, sizes, shapes and orientations. Grains can be viewed
at different scales, depending on the tool used to examine them.

Using metallurgical or geological optical microscopes, grains at the micrometer scale
are visible, delimiting areas of different reflection or transmission of light. Since visible light
is in a micrometer wavelength range, optics tell us the optical resolution is in the same order
of range, and no detail about crystallographic lattices is made accessible, except there are
known relationship between grain reflectivity or shape and crystal lattices. This has been used
for long by geologists and metallurgists to study crystallographic textures, prior to have
access to more sophisticated techniques.

With the development of scanning electron microscopes (SEM), scale ranges down to
several nanometers have been made accessible. Since electrons interact mainly with electrons
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(at least at low energies), grain contrast are made visible in patterns through differences in
atomic numbers. The way the electrons are interacting with the material, and the way the
information is detected (as backscattered electrons, x- or γ- emitted rays, inelastic or elastic
scattering ...) will condition the relevance of the information to be interpreted for texture
analysis. We can reasonably dissociate into two groups of information, if texture only is of
concerns, depending if the information is provided through a diffraction process or not.

If no diffraction occurs, the lattice plane spacing in the grains are not probed and the
relevant information gives "images" of the grains at the end. If these images are, or not,
interpretable as crystallographic texture lies on the same assumptions as for visible
microscopy: it has to exist a clear relationship between texture and the probed information.

Dealing with diffraction processes on the contrary probes directly interplanar
distances, and allows the texture characterisation. Diffraction of electrons in microscopes
(SEM or TEM) for texture studies are generally carried out by examining Kikuchi patterns,
but are beyond the scope of this course. Peoples interested in are pleased to read for instance
Wright 1993, Wright & Adams 1992, Wenk 1998.

Major advances in Quantitative Texture Analysis (QTA) have been brought by
modern diffractometry using x-rays or neutrons. In both cases the wavelength of the radiation
is comparable to the lattice sizes, and diffraction patterns can be used to more or less directly
determine the texture. We should mention here an important point which makes people
running into confusions if they do not pay attention: x-ray or neutron diffraction probe
crystallites and not grains. A crystallite is the largest domain which satisfies the periodic
translation of the crystal unit-cell in the three dimensional space. Hence, grains as seen by
microscopy can be made of a lot of crystallites, and a single-crystal is made of one crystallite.
We observed that many people were using grain and crystallite for either both of them, while
we are used to neatly dissociate the two terms, as in this text.

Usually, samples of interest are multi-phasic substances, i.e. they contain several
crystalline phases of different structure, each phase having its own properties including
texture, and with possible interactions between phases. Dealing with anisotropy of the
macroscopic properties of the ensemble, the most important parameter, at a few exceptions,
will be the texture. Anisotropic crystal structures will produce anisotropy of the
polycrystalline material only via the stabilisation of texture of at least one phase. As an
exception, we should cite elastic properties, for which even in randomly oriented (isotropic)
samples exhibit anisotropy (the one that gives rise to longitudinal and transverse wave
velocities for instance). The anisotropy can also come from extrinsic contributions, like for
magnetic properties for instance, for which long range interactions and shape effects may
create anisotropic magnetic signals of a polycrystal without texture.

But usually, and depending on the technique used to measure a sample property,
crystallographic textures may have an important impact. In order to evaluate if this is the case
for a specific study before any diffraction experiment, one has to primarily test these options:

•  Does the material I am looking at contains at least one crystalline phase ?
Amorphous materials have no long range periodicity of atoms, it is then a nonsense to

speak about orientation of crystal axes. Anisotropic properties may be found in amorphous
materials, but it is not a crystallographic texture effect. However, some materials are mixtures
of crystalline and amorphous phases, the former being potentially textured.

•  Are the crystalline systems constituting my materials anisotropic for the physical or
chemical property of concerns ?
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For instance, cubic crystal systems are isotropic for optical properties, but not for
elastic properties.

•  Are the crystallites randomly distributed in the sample ?
Even with anisotropic physical properties of the individual crystallites, if these later

are randomly distributed, their intrinsic properties too. Take care with elastic properties,
which in this case still stay anisotropic.

•  Are they some particular effects linked to the properties which I am measuring that
make the anisotropy not visible ?

Even if the material is textured and is constituted of anisotropic crystallites, the
anisotropy of the measured property may be masked. For instance, the shape of the crystallites
may give rise to demagnetising factors that can mask the magnetic macroscopic anisotropy. In
spectroscopic techniques (ESR, NMR …), measuring spectra at the so-called “magic angle”
can remove completely any effect of the texture …

3. Effects on diffraction diagrams

3.1. θθθθ-2θθθθ diagrams

Figure 1 is a scheme of a classical diffraction arrangement used for powder diffraction. It
is generally known as the Bragg-Brentano configuration (Brentano 1946, Cullity 1978). The
incident and diffracted beams define the incident plane (scattering plane), in which diffraction
is measured, with a scattering vector ∆∆∆∆k. The detector is placed at an angle 2θ from the
incident beam, itself at θ from the sample plane. Using this scan strategy, crystallographic
planes of different d-spacings are successively brought into diffraction.

Figure 2a shows a diffraction diagram for a random powder of La0.88Li0.12TiO3, and Figure
2b a diagram for the same phase deposited by sputtering on a (100) oriented MgO single
crystal substrate. Since the substrate d-spacings match the film ones, it induces texture of the
film, and the peak reflections are no more in the powder ratio. As we will see in next
paragraphs, the effect of the texture can only be measured qualitatively with such a single
diagram.

However, if the θ-2θ scan strategy reveals peaks from a large range of dhk!, it only probes
those {hk!} planes that are parallel to the sample plane.
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Figure 1: Schematic of a diffraction experiment using the θ-2θ geometry. The plane of the figure is the
scattering plane.

a)
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O

b)
Figure 2: a): Theoretical diagram for bulk La0.88Li0.12TiO3 and b): experimental diagram for the same phase

deposited on a (100) oriented MgO single crystal.

3.2. Asymmetric diagrams

Such diagrams are either measured with the same scanning strategy as before, θ-2θ with a
point detector, but with the sample rotated to a fixed angle δ relative to its previous position
(Figure 3), or using only a 2θ scan, with point or Position Sensitive, linear (PSD) (Wcislak et
al. 1993) or curved (CPS) detectors (Heizmann et Laruelle 1986).
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In the former case, the diagrams are similar to the ones of Figure 2, if we forget
corrections for absorption and volume changes. This diffraction geometry then only probes
for {hk!}’ planes that are inclined by δ = ω-θ from the sample plane, and texture is only
measured qualitatively using such a diagram as previously. It can however be used for a
qualitative check of the texture, for instance to prepare a texture experiment on another
goniometer.

Figure 3: Asymmetric geometry of measurement

In the latter case, only one incident angle ω is used and all the diffracted lines are recorded
simultaneously for all the 2θ positions made available by the detector (Figure 4). Then planes
that are diffracting at 2θ are not in the same orientation than the ones diffracting at 2θ’, ...

The textural information is then a bit more consequent, but only these planes are
diffracting. Measuring a flat powder sample, such a set-up will provide a diagram exhibiting
all the diffracted lines, with specific defocusing effects that will depend on ω and the detector
used. Absorption and volume corrections will also have to be carried out. Diagrams measured
on a textured sample will exhibit peak ratio which will depend on the texture, and different
than for a Bragg-Brentano measurement.

Figure 4: Asymmetric geometry using a PSD or a CPS
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For instance, a sample that exhibits only {00!} lines in the Bragg-Brentano geometry may
show at maximum only one {00!} peak using the asymmetric set-up (if {002} is diffracting,
for the 2θ003 peak position the {003} planes are not fulfilling the Bragg law). Of course this is
true only if the orientation dispersion is not too large.

Such a set-up is very useful for decreasing the acquisition times, because it economises
the scan in θ-2θ. In particular, it is very useful for texture analysis which requires a lot of
measured sample orientations. It is then particularly suited for materials having low
diffraction yields, like thin films for instance.

3.3. ωωωω-scans: rocking curves

This scan strategy is often used to reveal the orientation of planes with an orientation close
to parallel to the sample surface. For a fixed θ-2θ position (Figure 5), planes positioned at
different ω-θ are brought to diffraction by varying ω (taken positive for a counter clockwise
rotation).

This kind of measurement is most used by single crystal growers in order to check the
quality of their single crystals, called mosaic. In this case, the measured planes are inclined by
few tenth of a degree at maximum, and no absorption change between several ω positions is
significant, at a first approximation. This method is also used more and more to measure the
texture of thin structures, although the “mosaic” is then much larger, and often not suited for
such a characterisation.

Figure 5: ω-scan (rocking curves arrangement) for measuring orientations

A typical rocking curve of a {002} line measured for a single crystal is presented in
Figure 6. The FWHM of this reflection is 0.1° in ω, which means that a certain amount of
crystallites are inclined by 0.1° or less. The corresponding volume amount depends on the
curve shape. In this example the distribution is represented by a Gaussian, and approximately
86 % of the intensity is within the FWHM.
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Figure 6: ω-scan of a single crystal having a 0.1° FWHM of its {002} reflection centred at 2θ = 18°

4. Limitations of classical diagrams

4.1. θθθθ-2θθθθ diagrams

It is essential to notice that these diagrams are only probing planes parallel to the sample
surface, because this may represent only a low percentage of the volume of the material.

In this kind of experiment, diffraction lines are given by the Bragg's law. The experiment
itself may restrict the available range of observed peaks, by construction. Generally, ranges of
at best 2θ = 165° are measured. In this range, for a randomly oriented sample, the diamond
structure (Fd3m space group, a = 3.566 Å) using Cr Kα1 radiation (2.2897 Å) will show only
two peaks (Figure 7), corresponding to the {111} and {220} planes. Lets imagine now an
oriented sample of diamond in the same conditions. If the orientation is such that all the
{100} planes are parallel to the surface of the sample, no diffraction peak will be observed.
This is of course an extreme case, with a small, strongly symmetric unit-cell, under a
relatively large radiation. But lets now imagine {hk!}’ planes which could correspond to a
texture component with {111} planes tilted with respect to the sample normal. This
component will neither have {220} planes parallel to the surface, nor a second texture
component with {220} planes tilted from the normal will show {111} diffraction lines. We
can then imagine a sample with two texture components not showing any diffraction peak in
the available range, and we can extend this reasoning to larger 2θ ranges, larger and less
symmetric unit-cells.

The only important question is “how is the texture” ? Depending on the answer, we will
have rights to use classical Bragg-Brentano scans to say something about the texture.

Looking at Figure 1 and Figure 8, one can also see that for a given {hk!} plane family,
any rotation around the sample normal, n, does not change the diffraction diagram. If {hk!}
are parallel to the surface, the diffracted intensity is kept constant, while for {hk!}’ planes no
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intensity is detected. In particular, the two configurations represented in Figure 8 for two
different orientations of {hk!} planes give the same diffraction diagram. Both texture
components have the c axes of the structure parallel with n, but component C1 has its a axes
parallel with the macroscopic edges of the sample, while C2 has a axes at random around n.
We can conclude from this that it is impossible to check for eventual in-plane alignment of
the axes (like developed in epitaxial relationship) for the given sample, only looking at
classical θ-2θ diagrams.

Figure 7: Theoretical diagram in the 20-165° 2θ-range, for diamond measured with Cr Kα1 radiation

Figure 8: Two texture components differing only by their orientation in the sample plane

It should be mentioned here that semi-quantitative approaches of θ-2θ diagrams in
view of quantifying the textures have been developed in the past. The relative ratio of
different peaks from a textured diagram can provide information on texture. For instance,
Lotgering 1959 derived a quantitative factor, Lhk!, to reveal how strong the texture is in a
given material. This factor is defined by:

0

0
hk p1

p - p
 =L

−! (1)

where the p factors are calculated, in θ-2θ diagrams only, by the ratio of the sum of
specific I{hk!}i lines (all I{00!}'s for instance) to the sum of all the lines available in a ∆θ
range:
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with p being calculated for the textured sample while p0 is for a sample without
preferred orientation. Then p varies from p0 for a powder to 1 in an ideally oriented sample,
and Lhk! varies from 0 for a perfect powder to 1 for a fully oriented sample.
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However, if this factor is somehow linked to the strength of the texture (and Lotgering
specifically advised for it too), it is specific of one kind of planes only. If two or more textures
are present at the same time, two factors have to be calculated, with a priori no clear
relationship between them. Also, this factor is affected by the available ∆θ range.
Furthermore, it would still neither find any difference between the C1 and C2 variants of
Figure 8, nor be modified by the dispersion of the component, even if only one component of
texture is existing, although the consequences of different dispersions on the physical
properties may be drastically different !

4.2. Asymmetric diagrams

The limits developed for the regular θ-2θ scans remain valid for the asymmetric geometry,
whatever the detector used. But, a rotation around n will be able to provide some information
about eventual in-plane alignment since this rotation will bring to diffract planes which are
not coplanar (except if ω = θ, which corresponds to the regular θ-2θ scan).

4.3. ωωωω-scans

This measurement methodology can bring to diffraction, in the limit of reasonable ω’s,
only planes perpendicular to the incident plane. For instance (Figure 9), planes parallel to the
scattering plane will never satisfy the Bragg law when rotating through ω.

The ω-scan strategy may be aimed to quantitatively measure the texture, provided another
axis of rotation is added. The combined use of ω and rotation around n has been first used by
Field et Merchant, 1949, in order to accomplish texture measurements. This method suffers a
lack of extent of the available measurements.

Figure 9: Illustration of crystallographic planes rotation when planes are perpendicular (dotted or continuous
lines) or parallel (rectangles) to the diffraction plane

Lets imagine a distribution of crystallites well represented by a Gaussian shape with a
FWHM of 30°. In order to bring a plane which makes an angle of ω = -30° with the sample
surface into diffraction conditions, one has to rotate the sample by 30°, means ω = θ + 30. In
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the mean time, if the peak of interest is diffracting at a θ position lower than 30°, the
diffracted beam is then fully absorbed in the sample ! In this geometry, measurements are
limited by the necessary condition ω < ± θ. Since Bragg angles for intense peaks (reliable
peaks) are located in rather low θ-ranges, this limit is far below the necessary ranges of
texture measurements. It is of course suited for low angle ranges, then for single crystals.

Now imagine a distribution of crystallite orientations which is not symmetric around n
(Figure 10), for instance composed of two orientations with 0.1° FWHMs, one along n (with
c1 axes), the other (c2 axes) at an angle χ from n and ϕ from the intersection of the sample
surface and the scattering plane. Measured as positioned in Figure 10, a rocking curve on
{00!} planes will exhibit only one orientation component, C1, the only one having {00!}
planes perpendicular to the scattering plane (Figure 6). The C2 component will be revealed on
a {00!} rocking curve if the sample is rotated by ϕ around n before measurement (Figure 11).

Figure 10: Two orientation components, represented by their c axes
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Figure 11: Two orientation components, Gaussians with 10° FWHMs, as described in Figure 10 after rotation of
the sample by ϕ

We conclude in this paragraph that ω-scans can reveal the texture of a sample, with the
absorption limitations discussed above, if several of these scans are measured in different ϕ
orientations of the sample. This is exactly the goal of texture analysis !
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5. Representations of textures: pole figures

5.1. Pole Sphere

Figure 12 represents a single crystallite orientation with the c axis at χ from n, and at ϕ
from the macroscopic edges of the sample. The sphere on which all orientations can be
distributed is also shown. This sphere of unit radius is called the Pole Sphere, with a 4π2

surface. The orientations can then be distributed over a solid angle of 4π2 sr at maximum. The
intersection of the crystallographic direction [hk!] with the surface of the Pole Sphere is
called a “pole”, for instance the south or north poles !

In these representations, we are interested in the {hk!} planes distribution. We choose to
locate the orientation of one (hk!) plane by its normal [hk!]*. Correlatively, all {hk!} planes
will be located by their respective <hk!>* directions.

Except for single crystals, a material will contain numerous crystallites. A Pole Sphere of
a polycrystal will be the representation of all the poles of all the crystallites of the sample. For
cubic crystal structures, for which [hk!] ⊥  {hk!}, the interpretation of the Pole Sphere is then
straightforward, but for any other crystal system this relationship is not generally valid, and
we may need the help of the reciprocal lattice construction.

As an evidence, plotting all the poles of all the {hk!} planes of all the crystallites of a
sample would rapidly tend to a perfect homogeneous coverage of the Pole Sphere. Interesting
information will be visible if we represent the poles for only one family of {hk!} planes. We
will call this a {hk!} Pole Sphere. Also it may happen that experimentally several {hk!} plane
families could not be separated, and we will have then a {hk!/h’k’!’} Multipole Sphere.

Figure 12: Representation of a crystallite orientation on the Pole Sphere
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One entity which will be used is the unit surface element of the Pole Sphere, dS, the
surface drawn for a (dχ, dϕ) elementary variation. For a sphere of radius R, this elementary
surface would be:

dS = R2 sinχ dχ dϕ

which is in our case, with R = 1:

dS = sinχ dχ dϕ (3)

It is not very easy to represent a tri-dimensional object like a Pole Sphere and, although
some programs can do it, to interpret them this way. Interpreting the Pole Sphere using two-
dimensional projections is by far easier. We will call these projections {hk!} pole figures.

5.2. Stereographic projection

Figure 13a shows the stereographic projection of the pole sphere in the case of the single
pole of Figure 12. A pole, P, representing the intersection of [hk!]* with the Pole Sphere, is
projected on the equatorial plane in p, intersection of SP with the equatorial plane. In this
projection, the ϕ angle is conserved. All points located at the same ϕ are describing a
meridian (great circle) and all points at the same χ are at the same latitude (on a small circle).
Hence a pole P(χ,ϕ) of the Pole Sphere is represented by the pole p(r’,ϕ) in the {hk!} pole
figure, where r’ is the distance Op. Since r = R sinχ, we can plot a pole figure with any radius
R using:

r’ = R tan(χ/2)

                                                                                             a)                                                                                b)

Figure 13: Stereographic projection of Figure 12 (a) and Wulff net to manually read angles in the projection (b)

In such a projection, since tanχ is increasing with χ, two points located at the same
angular distance ∆χ on the sphere will be farther from one another near the periphery of the
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projection than near its centre (Figure 15a). Then, randomly distributed points on the sphere
will appear more concentrated in the centre of the projection. Also, the surface element
(surface between four adjacent points) is larger for larger χ’s.

Wulff nets (Figure 13b) may be used to manually determine angles between directions or
planes on such projections.

5.3. Equal area projection: Lambert projection

The pole P(χ,ϕ) is projected on the plane tangent to the Pole Sphere containing the north
pole (Figure 14), which is also conserving the ϕ angle. The rotation is around an axis
perpendicular to the ϕ meridian passing by O, centre of the projection. The relation Op = OP
is then valid for all points of the projection. For instance, a pole of the equator (χ = 90°) will
be at R√2 from O in the projection.

The projection p(r’,ϕ) can be obtained whatever R, after some geometry by:

r’ = 2R sin(χ/2)

For a given increase in χ, the distance between two points of the projection will decrease
slowly, particularly in the high χ-range. This decrease will partially compensate the increase
in surface element due to ϕ. Then this surface element will be similar near the periphery and
near the centre of the projection (Figure 15b), which is why this projection type is called
“equal-area”.

Schmidt nets may be used to manually determine angles between directions or planes on
such projections.

Figure 14: Lambert projection of Figure 12
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                                                                                        a)                                                                                b)

Figure 15: Stereographic (a) and Equal-area (b) projections of 1368 points located at every 5° in χ and ϕ on the
Pole Sphere

5.4. Pole Figures

To each of the points of one {hk!} pole figure we will associate a diffracted intensity,
Ihkl(χ,ϕ). Depending on the geometry of the experimental set-up, the angles χ and ϕ as
measured on the diffractometer may need to be transformed in order to get the real pole
figures. In all the following, we will reserve the angles χ and ϕ to the ones measured in the
diffractometer (Spectrometer) space ". After corrections, the angles retrieved in the pole
figures space, #, will be ϑy and ϕy, or simply y. Similarly, since pole figures will represent
<hk!>* direction distributions, we will simplify the notation into h = <hk!>*. Hence, on a
Direct Pole Figure will be represented diffracted intensities Ih(y).

Since diffraction is depending on the density of the material (porosity, density of the phase
in a polyphased material …), crystalline ratio (polymers …), thickness (thin films, multilayers
…), diffraction yields (different planes diffract different intensities), particle sizes,
stress/strain states …, it would become rapidly impossible to compare the orientation
distributions between samples from direct pole figures. We then have to normalise these
intensities into pole densities, or distribution densities, Ph(y). The resulting pole figures will
be called Normalised Pole Figures.

While direct pole figures are showing diffracted intensities, in number of diffracted
counts, the unity of normalised poles is the multiple of a random distribution, or m.r.d.. Using
this unity, a sample without any preferred orientation will exhibit normalised pole figures
with 1 m.r.d. for all h and y's, i.e. Ph(y)=1m.r.d.. A textured sample will show minima and
maxima of densities, the minimum density being 0, the maximum infinity.

The unity abbreviation "mrd" is often used. Since it can be mistaken as "milli-radians", we
choose to systematically use "m.r.d.".

6. Localisation of crystallographic directions from pole figures
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6.1. Normal diffraction and pole figures

Pole figures are representations of the distributions of crystalline directions, as
measured by diffraction in our case. In normal conditions for diffraction, i.e. far enough from
the atomic absorption edges, (hk!) and ( h k ! ) planes are diffracting the same intensities
(Friedel's law), at the same Bragg angle. It is then not useful to measure or represent the
whole Pole Sphere, and only half of it, the upper hemisphere will be considered.

Of interest is the location of specific h's in the sample that we are measuring. We need
to associate to the sample a reference frame, which will be used in the pole figures. This
sample reference frame, KA, is made of three unit-vectors (xA, yA, zA) of the respective axes,
XA, YA, ZA, such that xA ∧  yA = zA (Figure 16). In order to simplify, we generally try to align
these axes with macroscopic features of the sample. For instance, ZA is positioned parallel to
n, and the two other axes with the edges of the sample. The scattering plane is then
perpendicular to (XA, YA) in classical diffractometers. In KA, a vector will be represented by
its coordinates in terms of the unit-vectors (xA, yA, zA). For instance, the ZA axis is co-linear to
the vector [001] of the sample frame KA. Note that the [XYZ] coordinates are bold characters,
they have no correlation with the Miller indices which indicate crystal-related quantities.

Inside the sample are crystallites, having their own reference frame, KB, with their
own unit-vectors (xB, yB, zB) and axes, XB, YB, ZB (Figure 17). Similarly, we fix the normal to
the diffracting plane of the crystallite, [hk!]*, parallel to ZB. For crystal structures with right
angles of the unit-cell (cubic, tetragonal and orthorhombic), XB, YB, ZB can be chosen parallel
to a, b, c respectively, both frames having equal unit-vectors. However for other crystal
systems, this is no longer the case, and the crystal structure will be needed to know the
correspondence between KB and a, b, c.

Figure 16: The sample reference frame KA = (xA, yA, zA)
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Figure 17: Crystal and sample reference frames KB = (xB, yB, zB) and KA respectively. Only one crystallite is
shown

6.2. Grains, Crystallites and Crystallographic planes

Again, there is no relationship, a priori, between major axes of the crystallite and the
KB frame. In order to clarify the three notions crystallite/grain/diffracting planes, we represent
in Figure 18 a two-dimensional cross-section of an hypothetical sample. The sample is made
of grains, largest recognisable features in the cross section (green lines), which can vary in
sizes and shapes, depending on the process of elaboration ... Inside each grain several
crystallites (black or red lines) may appear, with various orientations, sizes and shapes, also
depending on many factors. Crystallites inside a grain may be separated by coincidence site
lattices, dislocation walls, twins, stacking faults, ... and it may happen that grains are
constituted by only one crystallite. In this case, if only one grain constitutes the sample, we
will call this peculiar sample a "single-crystal". Inside a crystallite, given (hk!) planes are
strictly parallel. For three crystallites of Figure 18 we show crystallographic planes with
different dhk! and different orientations.

Figure 18: Definitions of grains (green), crystallites (black and red) and crystallographic planes (dashes)

The kind of relationship existing between grains, crystallites, crystallographic planes may
be checked by local measurements with the help of electron microscopy, or by comparison
between microscopy patterns and the QTA results.
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6.3. Single texture component

In order to represent the textures, we will then use KB and KA in the pole figures. The
pole figures will be represented in such a way that ZA is their normal axis, XA the horizontal
axis and YA the vertical axis (Figure 19).

For one crystallite (Figure 19a), a direction y associated to the normal [hk!]* to the
diffracting plane (hk!), is then localised by the polar angle ϑy and the Azimuthal angle ϕy.
This latter takes its origin along XA, and is taken positive for a left-handed rotation when
looking down ZA. It then respects the mathematical definition of KA for a direct reference
frame.

However, in a polycrystal, a large number of crystallites are diffracting, and the pole
figure shows regions with large diffracted intensities (or densities, if we deal with normalised
pole figures), indicating the tendencies of the crystallites to align around a given direction of
the sample. The pole drawn by such an ensemble of crystallites (Figure 19b) is called a
texture component. For one component, the pole enlarges around the previous y direction,
meaning that some of the crystallites are about to align with y, but not strictly. It is then useful
to describe the component by the same ϑy and ϕy angles as y, but giving the shape of the
distribution and a parameter which quantifies how much the pole spreads, for instance
Gaussian with 10° FWHM. But we should never forget that describing a pole by an analytical
function imposes that we know the distribution is respecting the imposed shape, which is not
easily verifiable. For instance, in thin films, poles may appear very much elongated in one
direction, but not in the other (Pernet et al. 1994) due to the substrate interaction with the film.
Also, distributions may exhibit shapes which are other than Gaussian, Lorentzian for instance
(Isaure et al. 2001).

The diffraction intensity (then density) will depend on how the dispersion is for a
given pole. The larger the dispersion the lower the diffraction will be. The intensity and
density values are represented by colour or contour levels. However, for now, we have not
normalised the pole figures into quantitative densities, and it is not necessary to indicate these
intensity scales.
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                                                                                            a)                                                                                b)

Figure 19: a): Ph(y) Diffraction pole figure for one crystallite. The direction y is associated to the [hk!]* normal.
b): Pole figure of a texture component centred on the previous y, having a Gaussian shape of 10° FWHM, for h

= <001>* of an orthorhombic crystal structure.

6.4. Multiple texture components

Several components of texture may be present, as was the case in Figure 10. We have
taken this bi-component example and represented it in Figure 20 for c1 axes located around
(ϑy = 0; ϕy = 0) and c2 axes around (ϑy = 15°; ϕy = 300°). On this figure we now clearly see
that an ω-scan measured with the scattering plane containing ZA and XA (horizontal dashed
line) will exhibit a rocking curve with a single peak as in Figure 6 (but with a FWHM of 10°,
if corrected for absorption variations), which reveals to be very poor to describe the actual
texture !

Figure 20: {001} pole figure for the two-components texture of Figure 10. Each component has 10° FWHM, c1

being centred (ϑy = 0; ϕy = 0) and c2 being located at (ϑy = 15°; ϕy = 300°)
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Now rotating the scattering plane by 300° in ϕ, then measuring the ω-scan (oblique
dashed line), will provide the Figure 10, which correctly represents the bi-component texture
(knowing the shape can be represented by two Gaussians).

6.5. Pole figures and (hk!!!!) multiplicity

Using diffraction, all the (hk!) diffracting at the same Bragg angle will be retrieved on
the same Ph(y) pole figure. For instance (123) and (321) in a cubic crystal system. Then the
pole figure has to reveal the line multiplicity. Taking the C1 component of Figure 20 but with
a cubic crystal structure will give the pole figure of Figure 21, with one full pole (001) and
four halves (corresponding to (100) and (010)) at 90° in ϑy from (001). The multiplicity of
this pole figure is three at total, while the crystallographic multiplicity of the (100) reflection
of a cubic crystal system is six. Since we only concern the upper hemisphere in normal
diffraction pole figures, this is coherent.

Figure 20: {001} pole figure for the component C1 of Figure 20, for a cubic crystal structure

                                                                                      a)                                                               b)

Figure 21: Pole figures for the C1 component for a tetragonal crystal system. a): {001} b): {100}
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Then, for a given crystal system, two pole figures of different multiplicity will exhibit
a different number of poles. For instance (Figure 21), a sample crystallising in a tetragonal
crystal system which possess the C1 component will exhibit a {001} pole figure with only one
pole while the {100} will exhibit four halves.

6.6. A real example

As we have seen in the just previous paragraphs, a pole figure can then be a complex
object to interpret. It is a combination of a multiplicity, of components, with more or less
regular dispersions. Figure 22 shows pole figures which are combining many of these effects.
They have been measured on a real sample, an aragonite layer from the sea shell (a cowry)
Cypraea testudinaria. These pole figures are combining twinning, dispersion and two
components, of the orthorhombic crystal system (Chateigner et al. 1996).

Figure 22: {100}, {010}, {001} and {110} pole figures of an aragonite (orthorhombic crystal system) layer
from the sea shell Cypraea testudinaria

As we see, it is not easily interpretable at once, and we will need tools to help us. As a
first approach, we will classify the different texture types that one can encounter.

7. Texture types

7.1. Random texture

A random texture (or random sample) is simply a name given to the texture exhibited
by a sample that has no preferred orientation. Its crystallites are randomly distributed in
orientation. Then, statistically, there is the same number of grains diffracting at any y, and the
collected diffracted intensity for any y point in the pole figure is the same. Consequently, any
given crystalline {hk!} planes are also randomly distributed, and all the pole figures are
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homogeneous, whatever h, and whatever the crystal system. In such a texture, each crystallite
has three degree of freedom (rotations around three orthogonal axes) to position KB relative to
KA. Figure 23 shows the {100}, {001} and {110} pole figures of a random sample.

 
Figure 23: {100}, {001} and {110} pole figures of a random sample. Three degrees of freedom to orient each

crystallite

7.2. Planar textures

This kind of texture is exhibited by samples in which crystallites have two degrees of
freedom to orient. One specific <hk!>* direction family was allowed to rotate around one
sample axis. Then the <hk!>* directions are located in a plane, perpendicular to the rotation
axis, any other crystal direction around the given <hk!>* being at random. This is called a
planar texture. Imagine the rotation axis is XA and the direction family <100>* of an
orthorhombic crystal system (Figure 24). The <100>* directions are then distributed in the
(YA, ZA) plane. But since other directions are at random around <100>*, their pole figures
remain homogeneous.

Of course, it is a peculiar case that the rotation axis is along a major axis of the
sample, and that <100>* (a axes) are the concerned directions. It could have been an inclined
axis of rotation, and reflections with a larger multiplicity, giving rise to more complex pole
figures. Planar textures with the rotation axis around ZA are called cyclic-planar texture
(Figure 25).

Figure 24: {100}, {001} and {110} pole figures of a planar texture of the orthorhombic crystal system. Rotation
axis of the planar texture is with <100>* directions perpendicular to XA

100 001 110

100 001 110
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Figure 25: {100}, {001} and {110} pole figures of a cyclic-planar texture of the orthorhombic crystal system.
Rotation axis of the cyclic-planar texture is with <100>* directions perpendicular to ZA

7.3. Fibre Textures

If the crystallites loose another degree of freedom in their orientation, they are forced
to align one of their <hk!>* with one direction of the sample, all other directions being at
random around <hk!>*. Such a texture is called fibre texture.

Figure 26: {100}, {001} and {110} pole figures of a fibre texture of the orthorhombic crystal system. Fibre axis
is with <001>* directions at (ϑy = 45°; ϕy = 45°)

For instance, imagine all the <001>* from an orthorhombic crystal system are located
along (ϑy = 45°; ϕy = 45°) (Figure 26). Then <100>* and <110>* directions will be located at
random on a plane perpendicular to this y.

Similarly as previously, if the <001>* directions are aligned with ZA, then the texture
is called cyclic-fibre texture (Figure 27). Such a texture has <100>* and <110>* poles located
on the periphery of the equator.

100 001 110

100 001 110
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Figure 27: {100}, {001} and {110} pole figures of a cyclic-fibre texture of the orthorhombic crystal system.
Fibre axis is with <001>* directions along ZA

7.4. Three-dimensional texture

Samples composed of crystallites which had no choice to orient themselves in KA (0
degree of freedom) will exhibit punctual poles for all their pole figures. The pole figures will
be similar to the ones of a single crystal. We call this texture 3D texture. If, for instance, the
<001>* are aligned with ZA, and the <100>* with XA, the pole figures will look like in Figure
28. The ϕy angle to which are localised the <110>* poles depends, for an orthorhombic
crystal system, on the c/a ratio of the material phase.

Figure 28: {100}, {001} and {110} pole figures of a 3D texture of the orthorhombic crystal system, with
<001>* directions along ZA and <100>* directions along XA

One should avoid at this point to confuse between a real single crystal and a
polycrystal having all its crystallites perfectly aligned one with each other, as in a single
crystal (Figure 29). The diffracted intensity is proportional to the square of the number of
planes that build up the crystallite in the ∆∆∆∆k direction. In the former case this number is large
(it is the single crystal size in this direction), while in the latter case each crystallite in
restricted in size and the number of planes is small. The diffracted intensity is then much
larger for a single crystal, and direct pole figures will show very large intensity in this case,
although crystallites may be perfectly aligned in the polycrystal. However, in the normalised
pole figures, this difference will disappear since such figures only take into account the
orientation distributions.

100 001 110
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Figure 29: Difference between a perfect single crystal and a polycrystal having perfect 3D crystallite
orientations. Normalised pole figures would be identical

8. Pole Figures and Orientation spaces

8.1. Pole figures and orientation of planes

Figure 8 already showed us the ambiguity of the diffraction to reveal the orientation of
planes: there is no difference in the diffracted intensity between two orientation components
only differing by their rotation around ∆∆∆∆k (or n in Figure 8). Since in diffraction ∆∆∆∆k is aligned
with the vector h, planes oriented in such a way that h is parallel to a certain direction y will
all diffract, whatever their orientation around y. Differently said, diffraction only probes a
direction, not an orientation, and we need at least to determine the location of two direction of
a plane to know its orientation.

An example was given already, but implicitly, in Figure 27 for the cyclic-fibre texture.
In this figure, all the pole figures are different representations, as viewed from a different h, of
the same sample. Planes that contribute to the {001} pole are crystallographically linked to
the ones distributed on the periphery of the {100} and {110} pole figures. A crystallite which
has {001} planes (orthorhombic crystal symmetry) diffracting at the centre of the {001} pole
figure will have {100} planes diffracting on the periphery of the {100} pole figure since these
planes are at 90° from each other in the crystal.

Imagine now that only the {001} pole figure is accessible experimentally, with the
same pattern as in Figure 27. The information that gives such a figure is: c-axes of the
crystallites are all aligned with ZA. But nothing is given on the a-axes for instance, except that
they are at 90° of the c-axes and will give a signal on the periphery of the {100} pole figure.
In particular, nothing will dissociate in this theoretical case between a fibre-like texture
(Figure 27) or a 3D texture (Figure 28) having the same c-axes orientation.

8.2. Mathematical expression of diffraction pole figures

Diffraction measurements give in the #$space the pole figures, Ph(y) (Figure 19a)
after proper geometrical transformations from the " space. They represent the volumic
volumic density of crystallites oriented in dy, i.e. between (ϑy, ϕy) and (ϑy + dϑy, ϕy + ϕy).
This can be expressed by:

dyyy
h  )(P

4
1 =

V
)dV(

π
(4)
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where V is the irradiated volume (in diffraction experiments) of the sample and dV(y)
the volume of crystallites which orientation is with h directions between y and y+dy.

Similarly to Equation 3 and for consistency we have:

dy = sinϑy dϑy dϕy (5)

The factor 1/4π standing for normalising the pole figure into distribution densities, which
necessitates a normalisation condition for each pole figure:

πϕϑϑϕϑ∫∫
π

=ϑ

π

=ϕ

4 = dd sin ),(P
/2

0
yyyyy

2

0 yy

h (6)

8.3. The Orientation space !!!!

As just illustrated, the orientation of planes is defined by locating at least two directions
in the space. We then need another concept, the Orientation Distribution Function (or ODF),
f(g).

This function, analytical or not, represents the statistical distribution of the orientations of
the crystallites in a polycrystalline aggregate. It is defined similarly as the pole figures by:

dV(g)
V

=  
1

8π2 f (g) dg (7)

where dg = sin(β)dβdαdγ is the orientation element (defined in a 3-dimensional
space), defined by three Euler angles, g=α,β,γ (Figure 30) in the orientation space (or !-
space).

These three Euler angles bring the crystal coordinate system KB colinear with the
sample coordinate system KA. The !-space can be constructed from the space groups, taking
into account their rotation parts (since orientations are rotations) and the inversion centre
(since we are using diffraction). The two first angles α and β determine generally the
orientation of the <001>* crystallite directions in KA, they are called azimuth and colatitude
(or pole distance) respectively. The third angle, γ, defines the location of another
crystallographic direction, chosen as <010>* (or b in the (a,b) plane of an orthogonal crystal
system). V is the irradiated volume of the sample, dV(g) the volume of crystallites which
orientation is between g and g+dg.



QTA Internet Course Chapter 1
http://qta.ensicaen.ismra.fr/

© 2001 All rights reserved Daniel Chateigner; daniel.chateigner@ismra.fr 31

Figure 30: Definition of the three Euler angles that define the position of the crystallite coordinate system KB of
an orthogonal crystal cell in the sample coordinate system KA.

The function f(g) then represents the volumic density of crystallites oriented in dg. It is
also measured in m.r.d. and normalised to the value fr(g)=1 for a random sample. The
normalisation condition of f(g) over the whole orientation space is expressed by:

α

π

β

π

γ

π

π
= = =
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0

2

0

2

0

2/

f (g) dg = 8 2 (8)

The function f(g) can take values from 0 (absence of crystallites oriented in dg around
g) to infinity (for some of the !-space values of single crystals).

8.4. Euler angles conventions

There is an infinite number of possibilities for the choice of the Euler angles. The two
most used choices are the Roe-Matthies (Roe 1965, Matthies et al. 1987) and the Bunge
(Bunge et Esling 1982) conventions. A "symmetric Euler angles" set has been described by
Kocks 1988, and another convention by Canova et Kocks 1984.

In the Roe-Matthies and Bunge conventions, we use the so-called "rotation method".
In these methods, KA is rotated through three angles in order to bring it colinear to KB, or
inversely, respectively for the two conventions. For instance, in the Roe-Matthies frame, KA is
brought coincident to KB by the operation g : [KA " KB], using the three following rotations:

- Rotation of KA about the axis ZA through the angle α:
[KA " K'A]; associated rotation g1 = {α,0,0}

- Rotation of K'A about the axis YA through the angle β:
[K'A " K"A]; associated rotation g2 = {0,β,0}

- Rotation of K"A about the axis Z"A through the angle γ:
[K"A " K"'A//KB]; associated rotation g3 = {0,0,γ}
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we obtain finally:
g = g1 g2 g3 = {α,0,0} {0,β,0} {0,0,γ} = {α,β,γ}

The other set of rotation defined by Bunge uses three other angles, g = {ϕ1,Φ,ϕ2}
which simply differs in the second rotation step, which is operated about X'A instead of Y'A.
Table 1 shows the angular correspondences for the four most used conventions.

Matthies Roe Bunge Canova Kocks
α Ψ ϕ1 = α + π/2 ω = π/2 − α Ψ
β Θ Φ Θ Θ
γ Φ ϕ2 = γ + 3π/2 φ = 3π/2 − γ Φ = π − γ

Table 1: Correspondences between the most used Euler angle sets

8.4. Orientations and Pole figures

From the definition of the Roe-Matthies convention it can be seen that the angles α
and β correspond simply to the angles ϑy and ϕy of the pole figures. From the pole figures, we
then just have to imagine the third angle γ of the orientation, which is why we decided here to
use exclusively this convention.

Lets take few examples in order to finish this part, for an orthorhombic crystal system.
An orientation component centred on the g = {0,0,0} will have KA and KB perfectly aligned
on each other, which is the situation of Figure 28 with the same pole figures. Starting from
this situation, a rotation {45°,0,0} will give the {001/100/010} multipole figure of Figure 31a.
Then, a rotation {45°,45°,0} will be represented by the {001/100/010} multipole figure of
Figure 31b, and a {45,45,55} rotation the one of Figure 31c.

                                                   a)                                                        b)                                                     c)
Figure 31: {001/100/010} multipole figures for an orthorhombic crystal structure for the orientations a):

{45,0,0}; b): {45,45,0}; c): {45,55,45}. Roe-Matthies convention
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