







# **Combined Analysis**

texture, structure, microstructure, phase, stresses and reflectivity investigations of real multi-phased ceramics and thin structures using scattering of rays



#### **Texture from Spectra**

**Orientation Distribution Function (ODF)** 



### **Residual Stresses and Rietveld**



Textured samples: Reuss, Voigt, Hill, Bulk geometric mean approaches

## How it works

## Le Bail extraction

$$T_{hkl}^{k} = T_{hkl}^{k-1} \frac{\sum_{i} I_{i}^{\exp} S_{hkl}^{i}}{\sum_{i} I_{i}^{calc} S_{hkl}^{i}}$$

- Starts with nominal intensities (T<sub>hkl</sub>)
- Computes the full pattern (Icalc)
- Uses the formula to compute next T<sub>hkl</sub>
- Cycle the last two steps until convergence
- In Maud, options:
  - Only few cycles for texture (3-5) necessary
  - The range for the weighting of the profile can be reduced
  - Background subtracted or not

# Minimization algorithms

- Can be fully used in the method (everywhere)
- Marquardt Least Squares (based on steepest decrease and Gauss-Newton)
  - Efficient, best with few parameters, near the solution
- Evolutionary computation (or genetic algorithm)
  - Slow, not efficient, requires a lot of resources
  - Unlimited number of parameters
  - Can start far from the solution
- Simulated annealing (the solution proceed like a random walk, but the walking step decreases as temperature decreases)
  - In between the Marquardt and evolutionary algorithms
- Simplex (generates n+1 starting solutions as vertices of a polygon, n number of parameters, and contract/expand the polygon around the minima)
  - Slow on convergence
  - Remains close to the solution, but explore more minima with respect to the Marquardt

# Anisotropic sizes and microstrains



- Texture helps the "real" mean shape determination
- Determination by peak deconvolution + Popa formalism

$$<\!\!R_{h}\!\!> = R_{0} + R_{1}P_{2}^{\ 0}(x) + R_{2}P_{2}^{\ 1}(x)\cos\varphi + R_{3}P_{2}^{\ 1}(x)\sin\varphi + R_{4}P_{2}^{\ 2}(x)\cos2\varphi + R_{5}P_{2}^{\ 2}(x)\sin2\varphi + \\ <\!\!\epsilon_{h}^{\ 2}\!\!>\!\!E_{h}^{\ 4} = E_{1}h^{4} + E_{2}k^{4} + E_{3}\ell^{4} + 2E_{4}h^{2}k^{2} + 2E_{5}\ell^{2}k^{2} + 2E_{6}h^{2}\ell^{2} + 4E_{7}h^{3}k + 4E_{8}h^{3}\ell + 4E_{9}k^{3}h \\ 4E_{10}k^{3}\ell + 4E_{11}\ell^{3}h + 4E_{12}\ell^{3}k + 4E_{13}h^{2}k\ell + 4E_{14}k^{2}h\ell + 4E_{15}\ell^{2}kh$$

## **Rietveld-Structure**

$$I_i^{calc}(\chi,\phi) = \sum_{n=1}^{Nphases} S_n \sum_k L_k \left| F_{k;n} \right|^2 S\left(2\theta_i - 2\theta_{k;n}\right) P_{k;n}(\chi,\phi) A + bkg_i$$

**Texture**  
$$P_k(\chi,\phi) = \int_{\varphi} f(g,\varphi) d\varphi$$

• Generalized Spherical Harmonics (Bunge):

$$P_{k}(\chi,\phi) = \sum_{l=0}^{\infty} \frac{1}{2l+1} \sum_{n=-l}^{l} k_{l}^{n}(\chi,\phi) \sum_{m=-l}^{l} C_{l}^{mn} k_{n}^{*m} (\Theta_{k}\phi_{k}) \qquad f(g) = \sum_{l=0}^{\infty} \sum_{m,n=-l}^{l} C_{l}^{mn} T_{l}^{mn}(g)$$

• Components (Helming):

$$f(g) = F + \sum_{c} I^{c} f^{c}(g)$$

• WIMV (William, Imhof, Matthies, Vinel) iterative process:

$$f^{n+1}(g) = N_n \frac{f^n(g)f^0(g)}{\left(\prod_{\mathbf{h}=1}^{\mathbf{I}} \prod_{m=1}^{M_{\mathbf{h}}} P_{\mathbf{h}}^n(\mathbf{y})\right)^{\frac{1}{IM_{\mathbf{h}}}}}$$

$$f^{0}(g) = N_{0} \left( \prod_{\mathbf{h}=1}^{\mathrm{I}} \prod_{m=1}^{M_{\mathbf{h}}} P_{\mathbf{h}}^{\exp}(\mathbf{y}) \right)^{\frac{1}{IM_{\mathbf{h}}}}$$

#### E-WIMV (Rietveld only):

with 0 < r<sub>n</sub> < 1, relaxation parameter, M<sub>h</sub> number of division points of the integral around k, w<sub>h</sub> reflection weight

• Entropy maximisation (Schaeben):

$$f^{n+1}(g) = f^n(g) \prod_{m=1}^{M_{\mathbf{h}}} \left( \frac{P_{\mathbf{h}}(\mathbf{y})}{P_{\mathbf{h}}^n(\mathbf{y})} \right)^{r_n \frac{W_{\mathbf{h}}}{M_{\mathbf{h}}}}$$

$$f^{n+1}(g) = f^n(g) \prod_{m=1}^{M_{\mathbf{h}}} \left( \frac{P_{\mathbf{h}}(\mathbf{y})}{P_{\mathbf{h}}^n(\mathbf{y})} \right)^{\frac{T_{\mathbf{h}}}{M_{\mathbf{h}}}}$$

 arbitrarily defined cells (ADC, Pawlik): Very similar to E-WIMV, with integrals along path tubes

# Layering

## **Asymmetric Bragg-Brentano**

$$C_{\chi}^{\text{top film}} = g_1 \left( 1 - \exp\left(-\mu T g_2 / \cos \chi\right) \right) / \left( 1 - \exp\left(-2\mu T / \sin \omega \cos \chi\right) \right)$$
$$C_{\chi}^{\text{cov.layer}} = C_{\chi}^{\text{top film}} \left( \exp\left(-g_2 \sum \mu_i T_i / \cos \chi\right) \right) / \left( \exp\left(-2\sum \mu_i T_i / \sin \omega \cos \chi\right) \right)$$



# Specular reflectivity: q=(0,0,z)

• Fresnel:

$$R(\mathbf{q}) = \left| \frac{q_z - \sqrt{q_z^2 - q_c^2 + \frac{32i\pi^2\beta}{\lambda^2}}}{q_z + \sqrt{q_z^2 - q_c^2 + \frac{32i\pi^2\beta}{\lambda^2}}} \right|^2 \delta q_x \delta q_z$$

• matrix:

$$R^{flat} = \frac{r_{0,1}^2 + r_{1,2}^2 + 2r_{0,1}r_{1,2}\cos 2k_{Z,1}h_{1,2}}{1 + r_{0,1}^2r_{1,2}^2 + 2r_{0,1}r_{1,2}\cos 2k_{Z,1}h_{1,2}}$$

• Born approximation:

$$R(q_z) = r \cdot r^* = R_F(q_z) \left| \frac{1}{\rho_s} \int_{-\infty}^{+\infty} \frac{d\rho(z)}{dz} e^{iq_z z} dz \right|^2$$

• Roughness:

$$R^{rough}(q_z) = R(q_z) \exp(-q_{z,0}q_{z,1}\sigma^2) \quad \text{Low-angles (reflectivity)}$$
$$S_R = 1 - p \exp(-q) + p \exp\left(\frac{-q}{\sin\theta}\right) \quad \text{high-angle (Suortti)}$$

# Strain-Stress



$$\chi^{2} = \sum_{i} w_{i}^{2} \left[ \varepsilon_{i}^{calc}(S_{ijk\ell}^{M}, \mathbf{h}, \mathbf{y}) - \varepsilon_{i}^{meas}(S_{ijk\ell}^{M}, \mathbf{h}, \mathbf{y}) \right]^{2}$$

#### Non-linear least-square fit

*Isotropic samples:* triaxial, biaxial uniaxial stress state

$$\begin{split} \left( \mathbf{y} \right)_{V_d} &= \frac{1}{V_d} \int_{V_d} (\varepsilon_{33}^I + \varepsilon_{33}^{II} + \varepsilon_{33}^{III}) dV \\ &= (\varepsilon_{11}^I \cos^2 \phi + \varepsilon_{12}^I \sin 2\phi + \varepsilon_{22}^I \sin^2 \phi - \varepsilon_{33}^I) \sin^2 \psi + \varepsilon_{33}^I + \\ &(\varepsilon_{13}^I \cos \phi + \varepsilon_{23}^I \sin \phi) \sin 2\psi + \frac{1}{V_d} \int_{V_d} (\varepsilon_{33}^{IIe} + \varepsilon_{33}^{IIIi} + \varepsilon_{33}^{IIpi}) dV \\ &= \frac{\left\langle d(hkl, \phi, \psi) \right\rangle_{V_d} - d_0(hkl)}{d_0(hkl)} \end{split}$$

#### Textured samples:

triaxial, biaxial uniaxial stress state + ODF + SDF + model

$$\left\langle E(\mathbf{g}) \right\rangle_{V_d} = \frac{1}{V_d} \int_{V_d} E^{SC}(g) f(g) dg$$
$$= \left( \prod_{V_d} E^{SC}(g) f(g) dg \right)^{\frac{1}{V_d}}$$

# Phase analysis

• Volume fraction

$$V_{\Phi} = \frac{S_{\Phi} V_{uc\Phi}^2}{\sum_{\Phi} \left( S_{\Phi} V_{uc\Phi}^2 \right)_{\Phi}}$$

• Weight fraction

$$m_{\Phi} = \frac{S_{\Phi} Z_{\Phi} M_{\Phi} V_{uc\Phi}^{2}}{\sum_{\Phi} \left( S_{\Phi} Z_{\Phi} M_{\Phi} V_{uc\Phi}^{2} \right)_{\Phi}}$$

Z = number of formula units M = mass of the formula unit V = cell volume

## Implemented codes



## Minimum experimental requirements



1D or 2D Detector + 4-circle diffractometer (X-rays and neutrons) CRISMAT, ILL

~1000 experiments (20 diagrams) in as many sample orientations

+

Instrument calibration (peaks widths and shapes, misalignments, defocusing ...)









KCl,  $LaB_6 \dots$ 



FWHM ( $\omega$ ,  $\chi$ ,  $2\theta$  ...) 2 $\theta$  shift gaussianity asymmetry misalignments ...

## **Methodology implementation**

| 📑 Maud File Edit Refinement Graphi     | c Interface  | Special       | Help           |              |               |                                  |                                   | * <                | >  |
|----------------------------------------|--------------|---------------|----------------|--------------|---------------|----------------------------------|-----------------------------------|--------------------|----|
| $\Theta \Theta \Theta$                 | D            | iffraction So | reamer - alzro | .par         |               |                                  |                                   |                    |    |
|                                        | <u>ତ</u> 🗐 ୩ | 2             | ?              |              |               |                                  |                                   |                    |    |
| Datasets Phases Sample                 |              |               | 🔁 Pla          | ot 🚹 Plot 2D | 🛛 🔇 Res       | iduals 2D                        |                                   |                    |    |
| XRD-al2O3-tPSZ                         |              |               |                |              |               |                                  |                                   |                    |    |
|                                        |              |               |                |              |               |                                  |                                   |                    |    |
|                                        |              | 00.0          |                |              |               |                                  |                                   |                    |    |
|                                        |              | 0.00          |                |              |               |                                  |                                   |                    |    |
|                                        | II 12        |               |                |              |               |                                  |                                   |                    |    |
|                                        | C            | -             |                | 1            |               |                                  |                                   |                    |    |
|                                        | 12           |               | 1 1 1          |              |               |                                  |                                   |                    |    |
| Wgt'd ssq = 4962.4883                  | sity         | 50.0          |                | la i         |               |                                  |                                   |                    |    |
| $s_i = 1.3746824$                      | 5            |               |                | T T          |               |                                  |                                   |                    |    |
| Rw (%) = 8.743007                      | <u> </u>     |               |                |              |               |                                  |                                   |                    |    |
| Rnw (%) = 0.087430075                  |              | L1 f          |                |              | 1. 1          | i t                              | 1 1                               |                    |    |
| Rb (%) = 6.194217                      |              |               |                |              | <b>M.</b> 114 | .k .l.                           | <b>M</b> .                        | AL AS              |    |
| Rexp(%) = 6.360019<br># iterations = 5 |              |               | JU JU/U        | 尹明 祖.私在      | MUMP          | NY IN                            |                                   |                    |    |
| 0 0.0030142753                         | T-PSZ        |               |                |              |               |                                  | to be the black the later. In the | Die bile for the   |    |
| 1 4.4746394                            | corundum     |               |                |              | 1,100,10,0    | 1.000.000.000                    | hin hin hinder in                 | India da Contra da |    |
| 2 0.2611406                            |              |               |                |              |               |                                  |                                   |                    |    |
| 3 0.0052219494                         |              | and works     | ****           |              |               | ببرهنمود ومجاوفه الإحبيليو إرجاد |                                   |                    |    |
| 5 1.2580108E-7                         |              |               |                | 1            |               | 1                                |                                   |                    |    |
| 6 0.34816822                           |              |               | 50.0           | 2 T          | hote (door    | 00.0                             |                                   | 150.0              |    |
|                                        |              |               |                |              | neta juegi    | ccsj                             |                                   |                    |    |
| End of refinement, have a good day!    |              |               |                |              |               | (                                | Replot                            | Plot options       |    |
| Name                                   |              | Value         | ^              | Error        | Min           | Max                              | Status                            | Output             | T  |
| 📁 alzrc.par                            | -            |               |                | -            | -             | -                                | *****                             | false              |    |
| 🔻 河 AluminaTZP                         | -            |               |                | -            | -             | -                                | ****                              | false              |    |
| 📄 sample ref. system omega (deg)       | 0            |               |                | 0.0          | 0.0           | 0.0                              | Fixed                             | false              |    |
| 📄 sample ref. system chi (deg)         | 0            |               |                | 0.0          | 0.0           | 0.0                              | Fixed                             | false              |    |
| 📄 sample ref. system phi (deg)         | 0            |               |                | 0.0          | 0.0           | 0.0                              | Fixed                             | false              |    |
| sample displacement x (mm)             | 0            |               |                | 0.0          | 0.0           | 0.0                              | Fixed                             | false              | F, |

#### L. Lutterotti, Trento

#### User friendly interface

Java codes Java web start updates







Grain alignment  $\Rightarrow$  /Jc

#### (00 $\ell$ ) Texture







Combined Analysis



-Neutrons -Sample: ~70 mm<sup>3</sup> -2 $\theta$  patterns for  $\chi$ =0° to 90° -No  $\phi$  rotation (fibre texture).



Rw=9.12 RP=16.24





Stacking faults and/or intergrowth on the c-axis  $\rightarrow$  New periodicities and peaks characterized with intermediate c parameters.

However, no algorithm is included to solve intergrowths in the combined approach.



Logarithmic density scale, equal area projection

#### Effect of the sinter-forging treatment on the texture development, crystal growth, transport properties

| Sinter-<br>forging dwell | Orientation Distribution<br>Max<br>(m.r.d.) |        | % Bi2223 | Cell parameters (Å)                     |                                         | Crystallite size<br>Bi2223 | Rb<br>(%) | <i>Rw</i> | Rexp | RP0<br>(%) | RP1                                               | $J_c$ |
|--------------------------|---------------------------------------------|--------|----------|-----------------------------------------|-----------------------------------------|----------------------------|-----------|-----------|------|------------|---------------------------------------------------|-------|
| time (h)                 | Bi2212                                      | Bi2223 |          | Bi2223                                  | Bi2212                                  | (nm)                       | (70)      | (70)      | (70) | (70)       | <i>RP1</i> (%)<br>10.56<br>11.04<br>9.31<br>12.25 |       |
| 20                       | 21.8                                        | 20.7   | 59.9±1.3 | a=5.419(3)<br>b=5.391(3)<br>c=37.168(3) | a=5.414(3)<br>b=5.393(3)<br>c=30.800(3) | 205±7                      | 7.56      | 11.1      | 4.55 | 17.74      | 10.56                                             | 12500 |
| 50                       | 24.1                                        | 24.4   | 72.9±2.9 | a=5.419(3)<br>b=5.408(3)<br>c=37.192(3) | a=5.416(3)<br>b=5.396(3)<br>c=30.806(3) | 273±10                     | 7.54      | 11.37     | 4.58 | 17.05      | 11.04                                             | 15000 |
| 100                      | 31.5                                        | 25.2   | 84.4±4.6 | a=5.410(3)<br>b=5.405(3)<br>c=37.144(3) | a=5.412(3)<br>b=5.403(3)<br>c=30.752(3) | 303±10                     | 5.4       | 8.04      | 3.69 | 13.54      | 9.31                                              | 19000 |
| 150                      | 65.4                                        | 27.2   | 87.0±4.1 | a=5.417(3)<br>b=5.403(3)<br>c=37.199(3) | a=5.413(3)<br>b=5.407(3)<br>c=30.792(3) | 383±13                     | 6.13      | 9.12      | 4.8  | 16.24      | 12.25                                             | 20000 |





% Bi2223

Texture strength



Crystallite Size

## *Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> thermoelectrics* J.G. Noudem, Caen

Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub>: Misfit lamellar and modulated Structure, with high thermopower



Two monoclinic sub-systems: S1 with  $a \sim 4.8$ Å,  $b_1 \sim 4.5$ Å,  $c \sim 10.8$ Å et  $\beta \sim 98$ ° (NaCl-type) S2 with  $a \sim 4.8$ Å,  $b_2 \sim 2.8$ Å,  $c \sim 10.8$ Å et  $\beta \sim 98$ ° (CdI<sub>2</sub>type)







Magnetic alignment and Templated Growth method

#### Analysis:

- neutrons

- 3D Supercell: a=4.8309Å, b~8b1~13b2~36.4902Å, c=10.8353Å, β=98.13° 174 atoms/cell -Sample : 0.6 cm<sup>3</sup>



RP=19.7%, Rw=11.9%





#### **Magnetic Alignment**

 magnetic alignment really efficient to obtain strong textures
 combined analysis of modulated structures possible

### *Ferroelectric PCT films* J. Ricote, Madrid

#### thin films:

 $(Ca_{0.24}Pb_{0.76})TiO_3$  sol-gel synthesised solutions deposited by spin coating on a substrate of Pt/TiO<sub>2</sub>/Si, with and without a treatment at 650°C for 30 min.

All films are crystallised at 700°C for 50 s by Rapid Thermal Processing (RTP; 30°C/s). A series is also recrystallised at 650°C for 1 to 3 h.



#### Limitations of the simple Quantitative Texture Analysis

#### Structural parameters are difficult to obtain due to:





a = 3.9108(1) Å

T = 457(3) Å

 $t_{iso} = 458(3) Å$ 

 $\epsilon' = 0.0032(1) \text{ rms}$ 

a = 3.9156(1) Å c = 4.0497(3) Å T = 2525(13) Å t<sub>iso</sub> = 390(7) Å  $\epsilon$  = 0.0067(1) rms

 $\begin{array}{l} {R_{_{W}}} = 13\%; \, {R_{_{B}}} = 12\%; \, {R_{_{exp}}} = 22\%.(\text{Rietveld}) \\ {R_{_{W}}} = 5\%; \, {R_{_{B}}} = 6\% \;(\text{E-WIMV}) \end{array}$ 

 111
 200

 200
 -10.18764433333331

 220
 -10.18764433333331

 -10.18764433333331
 -1.1 mrd

 0.027/447354977777773
 -1.1 mrd

Pt

| Atom | Occupancy | Х   | У   | Z        |
|------|-----------|-----|-----|----------|
| Pb   | 0.76      | 0.0 | 0.0 | 0.0      |
| Ca   | 0.24      | 0.0 | 0.0 | 0.0      |
| Ti   | 1.0       | 0.5 | 0.5 | 0.477(2) |
| O1   | 1.0       | 0.5 | 0.5 | 0.060(2) |
| 02   | 1.0       | 0.0 | 0.5 | 0.631(1) |



#### **Structural parameters**

| Pt layer                    | a (Å) tl       | nickness (nm)      | R factors (%)                                                                |
|-----------------------------|----------------|--------------------|------------------------------------------------------------------------------|
| non-treated substrate<br>Pt | e<br>3.9108(1) | 45.7(3)            | R <sub>w</sub> =13, R <sub>B</sub> =12, R <sub>exp</sub> =22                 |
| annealed substrate          | 0.0400(4)      | 40,4(0)            | D -0 D -14 D -01                                                             |
| P[<br>Pt (Recryst 1h)       | 3.9100(4)      | 46.4(3)<br>47.8(3) | $R_W = 8$ , $R_B = 14$ , $R_{exp} = 21$<br>$R_{exp} = 20$ $R_{exp} = 21$     |
| Pt (Recryst. 2h)            | 3.9068(1)      | 46.9(3)            | $R_{W}=9$ , $R_{B}=20$ , $R_{exp}=21$<br>$R_{W}=9$ , $R_{B}=14$ , $R_{H}=22$ |
| Pt (Recryst. 3h)            | 3.9141(4)      | 47.5(9)            | $R_{W}^{v}=27, R_{B}^{v}=12, R_{exp}^{exp}=21$                               |

Annealing of the substrate does not introduce significant variations on the structure of the Pt layer

| PTC film                                      | a (Å)                               | c (Å) th                            | ickness (nm)                      |
|-----------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|
| on non-treated substrate                      | 3.9156(1)                           | 4.0497(6)                           | 272.5(13)                         |
| PCT<br>PCT (Recryst. 1h)<br>PCT (Recryst. 2h) | 3.8920(6)<br>3.8929(2)<br>3.8982(2) | 4.0187(8)<br>4.0230(4)<br>4.0227(4) | 279.0(9)<br>266.1(11)<br>258 4(9) |
| PCT (Recryst. 3h)                             | 3.9001(4)                           | 4.0228(11)                          | 253.6(29)                         |

Recrystallisation reduces the stress on the film, and, increases the lattice parameters

#### Structural, microstructural and texture quantitative characterisation of ferroelectric thin films by the combined method



 $R_{W} = 13\%; R_{B} = 12\%; R_{exp} = 22\%.(Rietveld)$  $R_{W} = 5\%; R_{B} = 6\% (E-WIMV)$ 

## Substrate influence on Residual Stress and Texture



| Compliance                       | PbTiO <sub>3</sub> | Film        | PCT-Si      | PLT          | PCT-Mg       |
|----------------------------------|--------------------|-------------|-------------|--------------|--------------|
| coefficients                     | single crystal     | random      | <001>       | <001>        | <001>        |
| $[10^{-3} \text{ GPa}^{-1}]$     | (data set A)       | orientation | contrib≈17% | contrib.≈49% | contrib.≈68% |
| S <sub>11</sub>                  | 6.5                | 10.1        | 10.5        | 10.0         | 9.7          |
| \$ <sub>22</sub>                 | 6.5                | 10.0        | 10.5        | 10.0         | 9.7          |
| \$ <sub>33</sub>                 | 33.3               | 9.8         | 9.0         | 10.3         | 11.3         |
| S44                              | 14.5               | 13.2        | 12.8        | 12.9         | 13.1         |
| \$55                             | 14.5               | 13.2        | 12.8        | 13.0         | 13.1         |
| S <sub>66</sub>                  | 9.6                | 13.4        | 14.0        | 13.5         | 12.7         |
| s <sub>12</sub>                  | -0.35              | -3.3        | -3.5        | -3.2         | -3.0         |
| s <sub>21</sub>                  | -0.35              | -3.3        | -3.5        | -3.2         | -3.0         |
| s <sub>13</sub>                  | -7.1               | -3.2        | -3.1        | -3.4         | -3.6         |
| s <sub>31</sub>                  | -7.1               | -3.2        | -3.1        | -3.4         | -3.6         |
| S <sub>23</sub>                  | -7.1               | -3.2        | -3.1        | -3.4         | -3.6         |
| S <sub>32</sub>                  | -7.1               | -3.2        | -3.1        | -3.4         | -3.6         |
| s <sub>33</sub> /s <sub>11</sub> | 5.1                | 0.97        | 0.86        | 1.03         | 1.16         |
| s <sub>13</sub> /s <sub>12</sub> | 20.3               | 0.97        | 0.89        | 1.06         | 1.20         |

#### Geometric mean average + biaxial stress state

## *Ferroelectric PMN-PT films* J. Ricote, DMF-Madrid



a = 
$$3.91172(1)$$
 Å  
T =  $583(5)$  Å  
t<sub>iso</sub> =  $960(1)$  Å  
 $\varepsilon$  =  $0.0032(1)$  rms  
 $\sigma_{11}$  =  $0.639(1)$  GPa  
 $\sigma_{22}$  =  $0.651(1)$  GPa  
 $\sigma_{12}$  =  $-0.009(1)$  GPa

Pb<sub>0.7</sub> (Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-Pb<sub>0.3</sub>TiO<sub>3</sub> /TiO<sub>2</sub>/Pt/Si-(100)



## Si nanocrystalline thin films

M. Morales, Caen

Silicon thin films deposition by reactive magnetron sputtering: bower density 2W/cm<sup>2</sup>  $\Rightarrow$  total pressure:  $p_{total} = 10^{-1}$  Torr  $\Rightarrow$  plasma mixture: H<sub>2</sub> / Ar, pH<sub>2</sub> / p<sub>total</sub> = 80 % ♦ temperature: 200°C  $\Rightarrow$  substrates: amorphous SiO<sub>2</sub> (a-SiO<sub>2</sub>) (100)-Si single-crystals ☆ target-substrate distance (d) •  $a-SiO_2$  substrates: d = 4, 6, 7, 8, 10, 12 cm films A, B, C, D, E, F • (1<u>00)-Si:</u> d = 6, 12 cmfilms G, H

Aim: quantum confinement, photoluminescence properties

## **Typical refinement**



broad, anisotropic diffracted lines, textured samples

# **Refinement Results**

|        |        |            | RX        | Anisot | tropic si | zes (Å) | T        | Reliability factors (%) |                                                     |                 |                |                |      |
|--------|--------|------------|-----------|--------|-----------|---------|----------|-------------------------|-----------------------------------------------------|-----------------|----------------|----------------|------|
| Sample | d (cm) | a (Å)      | thickness |        |           |         | Maximum  | minimum                 | Texture index                                       | RP <sub>0</sub> | R <sub>w</sub> | R <sub>B</sub> | Rexp |
|        |        |            | (nm)      | <111>  | <220>     | <311>   | (m.r.d.) | (m.r.d.)                | <b>F</b> <sup>2</sup> ( <b>m.r.d</b> <sup>2</sup> ) |                 |                |                |      |
| A      | 4      | 5.4466 (3) |           | 94     | 20        | 27      | 1.95     | 0.4                     | 1.12                                                | 1.72            | 4.0            | 3.7            | 3.5  |
| В      | 6      | 5.4439 (2) | 711 (50)  | 101    | 20        | 22      | 1.39     | 0.79                    | 1.01                                                | 0.71            | 4.9            | 4.3            | 4.2  |
| С      | 7      | 5.4346 (4) | 519 (60)  | 99     | 40        | 52      | 1.72     | 0.66                    | 1.05                                                | 0.78            | 4.3            | 4.0            | 3.9  |
| D      | 8      | 5.4461 (2) | 1447 (66) | 100    | 22        | 33      | 1.57     | 0.63                    | 1.04                                                | 0.90            | 5.5            | 4.6            | 4.5  |
| E      | 10     | 5.4462 (2) | 1360 (80) | 98     | 20        | 25      | 1.22     | 0.82                    | 1.01                                                | 0.56            | 5.0            | 3.9            | 4.0  |
| F      | 12     | 5.4452 (3) | 1110 (57) | 85     | 22        | 26      | 1.59     | 0.45                    | 1.05                                                | 1.08            | 4.2            | 3.5            | 3.7  |
| G      | 6      | 5.4387 (3) | 1307 (50) | 89     | 22        | 28      | 1.84     | 0.71                    | 1.01                                                | 1.57            | 5.2            | 4.7            | 4.2  |
| Н      | 12     | 5.4434 (2) | 1214 (18) | 88     | 22        | 24      | 2.77     | 0.50                    | 1.12                                                | 2.97            | 5.0            | 4.5            | 4.3  |

# Mean anisotropic shape



Schematic of the mean crystallite shape for Sample D represented in a cubic cell, as refined using the Popa approach and exhibiting a strong elongation along <111>, and TEM image



С

F



# XRR: Roughness governed







## Irradiated FluorApatite (FAp) ceramics S. Miro, PhD

Self-recrystallisation under irradiation, depending on  $\overline{SiO_4}$  /  $PO_4$  ratio (FAp / Nd-Britholite) and on irradiating species



TEM of FAp irradiated with 70 MeV, 10<sup>12</sup> Kr cm<sup>-2</sup> ions



# texture corrected, 10<sup>13</sup> Kr cm<sup>-2</sup>

# Virgin, with texture correction

# Virgin, no texture correction

| Fluence                  | Vc/V    | A         | с         | <t></t> | $\Delta a/a_0$ | $\Delta c/c_0$ | R <sub>w</sub> | R <sub>B</sub> |  |  |  |
|--------------------------|---------|-----------|-----------|---------|----------------|----------------|----------------|----------------|--|--|--|
| (ions.cm <sup>-2</sup> ) | (%)     | (Å)       | (Å)       | (nm)    | (%)            | (%)            | (%)            | (%)            |  |  |  |
| 0                        | 100     | 9.3365(3) | 6,8560(5) | 294(22) | -              | -              | 14.6           | 9.1            |  |  |  |
| Kr                       |         |           |           |         |                |                |                |                |  |  |  |
| $10^{11}$                | 100     | -         | -         | -       | -              | -              |                |                |  |  |  |
| $10^{12}$                | 100     | -         | -         | -       | -              | -              |                |                |  |  |  |
| 5.10 <sup>12</sup>       | 49(1)   | 9.3775(9) | 6.8912(8) | 294(20) | 0.44           | 0.53           | 24             | 15             |  |  |  |
| $10^{13}$                | 20(1)   | 9.4236(5) | 6.9105(5) | 291(20) | 0.94           | 0.82           | 9.9            | 6              |  |  |  |
| $5.10^{13}$              | 14(1)   | 9.3160(4) | 6.8402(5) | 294(22) | -0.21          | -0.22          | 10.5           | 5.9            |  |  |  |
|                          |         |           | Ι         |         |                |                |                |                |  |  |  |
| $10^{11}$                | -       | -         | -         | -       | -              | -              |                |                |  |  |  |
| $5.10^{11}$              | 86(2)   | 9.3603(3) | 6.8790(5) | 90(10)  | 0.26           | 0.35           | 23.9           | 15.1           |  |  |  |
| $10^{12}$                | -       | -         | -         | -       | -              | -              |                |                |  |  |  |
| $3.10^{12}$              | 47(2)   | 9.3645(3) | 6.8840(5) | 91(6)   | 0.30           | 0.42           | 13.3           | 9              |  |  |  |
| 5.10 <sup>12</sup>       | 29.2(5) | 9.3765(5) | 6.8881(6) | 77(11)  | 0.44           | 0.48           | 10.4           | 7.3            |  |  |  |
| 10 <sup>13</sup>         | 13.2(2) | 9.3719(4) | 6.8857(6) | 82(9)   | 0.38           | 0.45           | 6.7            | 4.9            |  |  |  |

Single impact model associated to crystal size reduction Cell parameters and volume increase, then relax

Amorphisation / recrystallisation competition: single or double impact

#### Amorphous/crystalline volume fraction (damaged fraction Fd = Va / V) as determined by x-ray diffraction



# $AIN/Pt/TiO_{x}/AI_{2}O_{3}/Ni-Co-Cr-AI$

E. Derniaux, PhD



Rw (%) = 24.120445 Rexp (%) = 5.8517213 T(AIN) = 14270(3) nmT(Pt) = 430(3) nm



 $(\chi, \phi)$  randomly selected diagrams

#### $Al_2O_3$

a = 4.7562(6) Å c = 12.875(3) Å T= 7790(31) nm <t> = 150(2) Å <{\varepsilon > = 0.008(3)

a = 3.569377(5) Å <t> = 7600(1900) Å < $\epsilon$ > = 0.00236(3) $\sigma_{11}$  = -328(8) MPa  $\sigma_{22}$  = -411(9) MPa







Rw (%) = 4.1

a = 3.11203(1) Å c = 4.98252(1) Å T = 14270(3) nm <t> = 2404(8) Å < $\epsilon$ > = 0.001853(2) $\sigma_{11}$  = -1019(2) MPa  $\sigma_{22}$  = -845(2) MPa

Rw(%) = 33.3

a = 3.91198(1) Å T = 1204(3) nm <t> = 2173(10) Å < $\epsilon$ > = 0.002410(3)  $\sigma_{11}$  = -196.5(8)  $\sigma_{22}$  = -99.6(6)

#### Substrate bias vs stress-texture evolution



## Conclusions

- a) Texture affects phase ratio and structure determination
- b) Microstructure (crystallite size) affects texture (go to a)
- c) Stresses shift peaks then affects structure and texture determination
- d) Combined analysis may be a solution, unless you can destroy your sample or are not interested in macroscopic anisotropy ...
- e) If you think you can destroy it, perhaps think twice
- f) more information is always needed: local probes ...
- g) www.ecole.ensicaen.fr/~chateign/texture/combined.pdf