Combined Analysis: NPD-XRD (Texture, residual stress ...) – XRF – Raman, and Magnetic QTA ?

D. Chateigner, L. Lutterotti Normandie Université, Univ. Trento

Normandie Université

ILL, Grenoble, France, 7th Mar. 2019

asymmetry

Why not benefit of texture in Structure determination?

- Perfect powders:
- overlaps (intra- and inter-r
- no angular constrain

reduced overlaps - max angular constrains

Single crystals:

- anisotropy difficult to resc - Perfect texture: max anisotropy

Single pattern

Many individual diffracted peaks

Textured powders: - reduced overlaps - angular constrain = f(texture strength) - Intermediate anisotropy

Many patterns to measure and analyse

Rietveld: extended to lots of spectra

 $y_{c}(\mathbf{y}_{\mathbf{S}},\theta,\eta) = y_{b}(\mathbf{y}_{\mathbf{S}},\theta,\eta) + I_{0} \sum_{i=1}^{N_{L}} \sum_{\Phi=1}^{N_{\Phi}} \frac{v_{i\Phi}}{V_{c\Phi}^{2}} \sum_{h} Lp(\theta) j_{\Phi h} |F_{\Phi h}|^{2} \Omega_{\Phi h}(\mathbf{y}_{\mathbf{S}},\theta,\eta) P_{\Phi h}(\mathbf{y}_{\mathbf{S}},\theta,\eta) A_{i\Phi}(\mathbf{y}_{\mathbf{S}},\theta,\eta)$

Texture:

$$P_{h}(\mathbf{y}_{S}) = \int_{\widetilde{\varphi}} f(g,\widetilde{\varphi}) d\widetilde{\varphi}$$

E-WIMV, components, Harmonics, Exp. Harmonics ...

Strain-Stress:

$$\left\langle S\right\rangle_{geo}^{-1} = \left[\prod_{m=1}^{N} S_{m}^{\mathbf{v}_{m}}\right]^{-1} = \prod_{m=1}^{N} S_{m}^{-\mathbf{v}_{m}} = \prod_{m=1}^{N} \left(S_{m}^{-1}\right)^{\mathbf{v}_{m}} = \left\langle S^{-1}\right\rangle_{geo} = \left\langle C\right\rangle_{geo}$$

Geometric mean, Voigt, Reuss, Hill ...

Layering:

$$A_{i\Phi} = \frac{v_{i\Phi} \sin \theta_i \sin \theta_o}{\overline{\mu}_i (\sin \theta_i + \sin \theta_o)} \left\{ 1 - e^{-\overline{\mu}_i \tau_i W} \right\} \prod_{k < i} e^{-\overline{\mu}_k \tau_k W}$$
$$W = \frac{1}{\sin \theta_i} + \frac{1}{\sin \theta_o}$$

Stacks, coatings, multilayers ... Line Broadening:

Popa, Delft: Crystallite sizes, shapes, microstrains, distributions 0D-3D defects

X-Ray Reflectivity (specular): Matrix, Parrat, DWBA, EDP ... X-Ray Fluorescence/GiXRF: De Boer Electron Diffraction Patterns: 2-waves Blackman

Line Broadening: Crystallite sizes, shapes, µstrains, distributions

Texture helps the "real" mean shape determination

Symmetrised spherical harmonics

 $<\mathbf{R_{h}}>=\mathbf{R_{0}}+\mathbf{R_{1}}\mathbf{P_{2}}^{0}(\mathbf{x})+\mathbf{R_{2}}\mathbf{P_{2}}^{1}(\mathbf{x})\mathbf{cos}\boldsymbol{\varphi}+\mathbf{R_{3}}\mathbf{P_{2}}^{1}(\mathbf{x})\mathbf{sin}\boldsymbol{\varphi}+\mathbf{R_{4}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{cos}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{5}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{5}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{5}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{5}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{5}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{5}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{5}}^{2}(\mathbf{$

 $< \epsilon_{\mathbf{h}}^{2} > E_{\mathbf{h}}^{4} = E_{1}h^{4} + E_{2}k^{4} + E_{3}\ell^{4} + 2E_{4}h^{2}k^{2} + 2E_{5}\ell^{2}k^{2} + 2E_{6}h^{2}\ell^{2} + 4E_{7}h^{3}k + 4E_{8}h^{3}\ell + 4E_{9}k^{3}h + 4E_{10}k^{3}\ell + 4E_{11}\ell^{3}h + 4E_{12}\ell^{3}k + 4E_{13}h^{2}k\ell + 4E_{14}k^{2}h\ell + 4E_{15}\ell^{2}kh$

EMT nanocrystalline zeolite

Ng, Chateigner, Valtchev, Mintova: Science 335 (2012) 70

Combined Analysis approach

Minimum experimental requirements

1D or 2D Detector + 4-circle diffractometer (X-rays and neutrons) CRISMAT, ILL (B. Ouladdiaf, T. Hansen)

~1000 experiments (20 diagrams) in as many sample orientations

+

Instrument calibration (peaks widths and shapes, misalignments, defocusing ...)

2D Curved Area Position Sensitive Detector

D19 - ILL

~100 experiments (2D Debye-Scherrer diagrams) in as many sample orientations

Minimum experimental requirements

1D or 2D Detector + 4-circle diffractometer (CRISMAT – ANR EcoCorail)

~1000 experiments (20 diagrams) in as many sample orientations

Instrument calibration (peaks widths and shapes, misalignments, defocusing ...)

Independent measurements

Different wavelengths and rays

Reflectivity: thickness, roughness, electron density profiles

X-ray Fluorescence: composition

Spectroscopies: local structures (PDF, FTIR, Mossbauer ...), eventually anisotropic (P-EXAFS, ESR, Raman ...), Element profiles (SIMS, RBS ...) ...

Physical models: magnetisation, conductivity ...

Environments: applied fields

Combined Analysis cost function

$$WSS = \sum_{t=1}^{N_p} u_t \sum_{i=0}^{N_t} w_{it} (y_{itc} - y_{ito})^2$$

For each pattern t: w_{it} : weight, usually $1/y_i = \sigma^2$.

u_t : weight of each pattern set t should be used to adjust the importance we want to give to a particular technique or pattern set with respect to the others

<u>Grinding-Spinning to powderise</u> another problem !

Grinding: removes angular relationship, adds correlations Spinning: what if the fiber texture axis // spinning axis ?

Texture and strains:

- not measured, not removed ?
- added ?

Same sample ? Rare samples ? Impossible to grind ?

Correction: without measuring it ? (March-Dollase)

Ca₃Co₄O₉ thermoelectrics

Ca₃Co₄O₉: Misfit lamellar and modulated Structure, with high thermopower

Two monoclinic sub-systems: S1 with a ~ 4.8Å, $b_1 \sim 4.5Å$, $c \sim 10.8Å$ et $\beta \sim 98^{\circ}$ (NaCl-type, 0.03 S2 with a ~ 4.8Å, $b_2 \sim 2.8Å$, $c \sim 10.8Å$ et $\beta \sim 98^{\circ}$ (CdI₂₋type)

Magnetic alignment + Templated Growth D. Kenfaui, E. Guilmeau, M. Prevel

- Neutrons @D1B
- 3D Supercell: a=4.8309Å, b~8b1~13b2~36.4902Å, c=10.8353Å, β=98.13° 174 atoms/cell -Sample : 0.6 cm³

0.01 m.r.d

• max. {001} : 42.73 mrd

Single layer Oriented platelets

Texture of amphiboles collected at rightarrow places and in rightarrow lithologic types

M. Zucali, Univ. Milano

White mica and chlorite partially replace amphibole or fill small fractures with quartz and carbonates

Combined approach allows to access pole figures for most of the rock-forming minerals (even for mica)

Degree of fabric evolution due to:

- deformation partitioning at metric-scale
- degree of chemical changes within amphiboles
- evolving metamorphic conditions during Alpine subduction (60-100 Million years).

α -Al₂O₃ Slip-casted + magnetically aligned ceramics

Carbon nanofibre

1 fibre (7 microns diameter): CCD Kappa diffractometer

Planar texture Component Ufer turbostractic model

	A(nm)	C(nm)	Orientation	Max 001	Crystallite	Crystallite	Global
			FWHM(°)	pole	size along	size along	microstrain
				figure	c (nm)	a (nm)	(rms)
				(m.r.d.)			
C1B1	0.23589(7)	0.6821(1)	21.6(1)	1.95	2.1(4)	2.2(4)	0.0152(10)
C2B1	0.23746(5)	0.68915(8)	18.75(6)	2.05	2.3(2)	2.5(2)	0.0154(11)
C3B1	0.23734(5)	0.69233(9)	18.63(6)	2.04	2.4(3)	2.7(5)	0.0136(6)
C3B2	0.23716(4)	0.69389(9)	19.87(7)	1.98	2.4(4)	2.5(4)	0.0150(4)
C3B3	0.23656(4)	0.68980(8)	19.16(6)	1.99	2.5(6)	2.3(5)	0.0168(8)

Turbostratic phyllosilicate aggregates

Mg_{0.75}Fe_{0.25}O high pressure experiments

E-WIMV + geo

a = 3.98639(3) Å <t> = 46.8(3) Å < ϵ > = 0.00535(1) σ_{33} = -861(3) MPa

LiNbO₃

- Predict macroscopic anisotropic properties: BAW

Propagation equation

$$\rho \frac{\partial^2 u^i}{\partial t^2} = \left[\mathbf{C}^{\mathrm{i}\ell \mathrm{mn}} \right] \frac{\partial^2 u_n}{\partial x^m \partial x^\ell}$$

Cubic crystal system

	c_{11} or c_{11}^{M}	$c_{12} \text{ or } c_{12}^{M}$	$c_{13} \text{ or } c_{13}^{M}$	$c_{14} \text{ or } c_{14}^{M}$	$c_{33} \text{ or } c_{33}^{M}$	$c_{44} \text{ or } c_{44}^{M}$
Single crystal	201	54.52	71.43	8.4	246.5	60.55
LiNbO ₃ /Si	206.4	68.5	67.6	0.48	216.5	64
LiNbO ₃ /Al ₂ O ₃	204	65.7	69.7	1.1	219.9	63.2

ErMn₃Fe₉C ferrimagnet

Predict macroscopic anisotropic properties: Magnetisation

$$\frac{M_{\perp}}{M_{\rm S}} = 2\pi \int_{0}^{\frac{\pi}{2}} (1 - \rho_0) PV(\theta_{\rm g}) \sin\theta_{\rm g} \cos(\theta_{\rm g} - \theta) d\theta_{\rm g} + \rho_0 M_{\rm random}$$

max {001}: 3.9 mrd min: 0.5 mrd

Combined XRR, XRD & GiXRF Analysis

XRR

GiXRF

$\Delta I^{m}_{\vec{h}}(\vec{y},\vec{B}) = I_{\vec{h}}(\vec{y},\vec{B}) - I_{\vec{h}}(\vec{y},0)$

$$I_{\vec{h}}(\vec{y},0) = I_{\vec{h}}^{n}(\vec{y},0) + I_{\vec{h}}^{m}(\vec{y},0)$$

$$I_{\vec{h}}(\vec{y},\vec{B}) = I_{\vec{h}}^{n}(\vec{y},0) + I_{\vec{h}}^{m}(\vec{y},\vec{B})$$

Magnetic QTA

**** True iteration step #120 ****			
ODF min max:	0.64		
Texture Index (F ²)	1.029		
Entropy	-0.014		
Average RP	0.24		
Average RP1	0.30		

2.26

Combined Measurement-Analysis for SOLSA

or Combined Measurements and Analysis:

* **SOLSA** * * *

XRD-XRF-Raman-FTIR Combined Analysis (SOLSA EU projet)

XRD-XRF-Raman

Comb. Meas.

XRD-XRF-Raman-IR Combined Analysis

Full-Pattern Search-Match

http://nanoair.dii.unitn.it:8080/sfpm/ cod.iutcaen.unicaen.fr

Diffraction pattern and sample composition
Upload diffraction pattern: Parcourir
Atomic elements in the sample: O AI Ca F Zn
Sample nanocrystalline
Experiment details
Radiation: ◎ X-ray tube: Cu ▼ ○ Other : x-ray ▼ Wavelength (Å): 1.540598
Instrument geometry: Bragg-Brentano (theta-2theta) Bragg-Brentano (2theta only), omega: 10 Debye-Scherrer Transmission
Instrument broadening function: Medium
Extra output (for debugging)
Structures database: CODstructures -

1 min later >275000 COD structures

Found phases and quantification:					
Phase ID	name	vol. (%)	wt. (%)	crystallites (Å)	microstrain
<u>9004178</u>	Zincite	16.8284	23.9708	2148.26	0.00028435
9009005	Fluorite	42.5522	33.9388	2117.08	0.000363147
9007498	Corundum	37.2197	37.2493	1889.82	0.000267779

6.98311e-05

Final Rietveld analysis, Rw: 0.159468, GofF: 1.95869

zinc_oxide 3.39971 4.84114 1754.74

2300112

Rutile nanocrystalline Electron Powder Diffraction pattern

Combined Analysis Workshop series:

www.ecole.ensicaen.fr/~chateign/formation/

Thanks!

FURNACE	DAME
ECOCORAIL	SEMOME

SMAM

ESQUI SOLSA

MEET MIND Xmat **COSTs**

COMBIX: Chair of Excellence