Combined Analysis: Texture, Structure, Residual Stress, Microstructure ... characterization using rays scattering

D. Chateigner CRISMAT-CNRS-ENSICAEN Université de Caen Normandie,Normandie Université

LOMC, Université Le Havre Normandie, 8th Feb.

<u>2024</u>

Retrospective

- Rietveld: Acta Cryst. (1967), J. Appl. Cryst (1969): NPD
- Rietveld on combined powder measurements: GSAS by Larson & Von Dreele, Fullprof by Rodriguez-Carvajal, Jana by Petricek ...
- Rietveld + QTA (WIMV): Lutterotti, Matthies, Wenk J. Appl. Phys. (1997)
- ESQUI EU FP6 project (1999-2003):
- -- Rietveld (+ layers + QMA + RSA + E-WIMV): Morales *et al. Mat. Sci. For.* (2002), Lutterotti et al. *Thin Sol. Films* (2004)
- -- + XRR + prop. Tensor homogeneization: Extended Rietveld,
 - Combined Analysis Wiley-ISTE (2010), Int. Tab. Vol H (2019)
- Electron Diffraction Pattern (2-waves Blackman dyn. Corr.): Boullay *et al. Acta Cryst A (2014)*
- X-ray Fluorescence (incl. Grazing incidence): Caby *et al. Spect. Acta B (2015)* SOLSA EU 2020 Raw Materials project (2016-2021):
- + Raman spec.: El Mendili *et al. ACS Earth & Space Chem. (2019)* + ROD J. Appl. Cryst. (2019)

Structure-Texture bias using individual analyses

B. Maestracci, PhD

	1 θ-2θ diagram	864 (χ φ) 2θ diagrams		
	Atomic positions (Å)	Atomic positions (Å)		
Single crystal	-	z_{A1} : 0.35222(4) x_0 : 0.3063(2)		
March-Dollase 00ℓ (100%) March-Dollase 00ℓ (99%) ℓ00 (1%)	z_{Al} : 0.35219(2) x_0 : 0.3054(2)	-		
1000 (170)	z_{A1} : 0.35232(2) x_0 : 0.3094(2)	-		
ODF E-WIMV 3.75°	-	z_{A1} : 0.352225(7) x_0 : 0.30633(5)		

Extended Rietveld

XRF: Shermann, De Boer

$$dI_{\zeta jk} \propto e^{-\mu_{s,E_{0}}\frac{z}{\sin\phi_{i}}} W_{\zeta} \left(\frac{\tau_{j}}{\rho}\right)_{\zeta_{E_{0}}} \rho_{s} dz \cdot \\ \cdot \omega_{\zeta j} p_{\zeta jk} e^{-\mu_{s,E_{\zeta jk}}\frac{z}{\sin\phi_{f}}} \epsilon_{E_{\zeta jk}}$$

- 1. attenuation to depth z
- 2. photoelectric absorption in layer dz
- 3. fluorescence yield
- 4. transition probability
- (relative intensity of lines in shell)
- 5. attenuation to the detector
- 6. detector efficiency

Texture: $P_h(\mathbf{y}_S) \int_{\widetilde{\varphi}} f(g,\widetilde{\varphi}) d\widetilde{\varphi}$

E-WIMV, components, Harmonics, Exp. Harmonics ...

Strain-Stress:

$$S_{\text{geo}}^{-1} \begin{bmatrix} N \\ m \\ m \end{bmatrix}^{-1} \begin{bmatrix} N \\ m \\ m \end{bmatrix}^{-1} = \prod_{m=1}^{N} S_m^{-\nu_m} = \prod_{m=1}^{N} S_m^{-1} \stackrel{\nu_m}{} \left\langle S^{-1} \right\rangle_{\text{geo}} \left\langle C \right\rangle_{\text{geo}}$$

Geometric mean, Voigt, Reuss, Hill ...

Layering:

$$A_{i\Phi} = \frac{v_{i\Phi} \sin \theta_i \sin \theta_o}{\overline{\mu}_i (\sin \theta_i + \sin \theta_o)} \left\{ 1 - e^{-\overline{\mu}_i \tau_i W} \right\} \prod_{k < i} e^{-\overline{\mu}_k \tau_k W}$$
$$W = \frac{1}{\sin \theta_i} + \frac{1}{\sin \theta_o}$$

Stacks, coatings, multilayers ...

Line Broadening: Crystallite sizes, shapes, strains, distributions

Texture helps the "real" mean shape determination •

 $\left\langle R_{\vec{h}} \right\rangle \quad \sum_{\ell}^{L} \sum_{\ell}^{\ell} R_{\ell}^{m} K_{\ell}^{m}(\chi, \varphi)$

 $\ell 0 m 0$

Symmetrised spherical harmonics

 $K_{\ell}^{m}(\chi, \varphi) = P_{\ell}^{m}(\cos \chi) \cos(m\varphi) = P_{\ell}^{m}(\cos \chi) \sin(m\varphi)$

 $<\mathbf{R_{h}}> = \mathbf{R_{0}} + \mathbf{R_{1}}\mathbf{P_{2}}^{0}(\mathbf{x}) + \mathbf{R_{2}}\mathbf{P_{2}}^{1}(\mathbf{x})\cos\phi + \mathbf{R_{3}}\mathbf{P_{2}}^{1}(\mathbf{x})\sin\phi + \mathbf{R_{4}}\mathbf{P_{2}}^{2}(\mathbf{x})\cos2\phi + \mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\sin2\phi + \mathbf{R_{4}}\mathbf{P_{4}}^{2}(\mathbf{x})\cos2\phi + \mathbf{R_{5}}\mathbf{P_{4}}^{2}(\mathbf{x})\sin2\phi + \mathbf{R_{4}}\mathbf{P_{4}}^{2}(\mathbf{x})\cos2\phi + \mathbf{R_{5}}\mathbf{P_{4}}^{2}(\mathbf{x})\cos2\phi + \mathbf{R_{5}}\mathbf{P_{4}}^{2}(\mathbf{x})\sin2\phi + \mathbf{R_{5}}\mathbf{P_{4}}^{2}(\mathbf{x})\cos2\phi + \mathbf{R_{5}}\mathbf{P_{4}}^{2}(\mathbf{x})\sin2\phi + \mathbf{R_{5}}\mathbf{P_{4}}^{2}(\mathbf{x})\cos2\phi + \mathbf{R_{5}}\mathbf{P_{4}}^{2}(\mathbf{x})\cos2\phi + \mathbf{R_{5}}\mathbf{P_{5}}^{2}(\mathbf{x})\cos2\phi + \mathbf{R_{5}}\mathbf$ $< \epsilon_{\mathbf{h}}^{2} > E_{\mathbf{h}}^{4} = E_{1}h^{4} + E_{2}k^{4} + E_{3}\ell^{4} + 2E_{4}h^{2}k^{2} + 2E_{5}\ell^{2}k^{2} + 2E_{6}h^{2}\ell^{2} + 4E_{7}h^{3}k + 4E_{8}h^{3}\ell + 4E_{9}k^{3}h + 4E_{9}k^{3}$ $4E_{10}k^{3}\ell + 4E_{11}\ell^{3}h + 4E_{12}\ell^{3}k + 4E_{13}h^{2}k\ell + 4E_{14}k^{2}h\ell + 4E_{15}\ell^{2}kh$

Specular reflectivity: **q**=(0,0,z)

• Fresnel:

 $R \mathbf{q} \quad \left| \frac{q_z - \sqrt{q_z^2 - q_c^2}}{q_z} \frac{32i\pi^2\beta}{\lambda^2}}{\sqrt{q_z^2 - q_c^2}} \frac{32i\pi^2\beta}{\lambda^2} \right|^2 \delta q_x \delta q$

• matrix:

 $R^{flat} = \frac{r_{0,1}^2 r_{1,2}^2 2r_{0,1}r_{1,2}\cos 2k_{Z,1}h}{1 r_{0,1}^2 r_{1,2}^2 2r_{0,1}r_{1,2}\cos 2k_{Z,1}h}$

 Born approximation: Electron Density Profile

$$R(q_z) \quad r.r^* \quad R_F(q_z) \left| \frac{1}{\rho_s} \int_{-\infty}^{\infty} \frac{d\rho(z)}{dz} e^{iq_z z} dz \right|^2$$

• Roughness:

$$R^{rough} q_z \quad R q_z \exp(-q_{z,0}q_{z,1}\sigma^2)$$
 Low-angles (reflectivity)
 $S_R \quad 1-p \exp(-q) \quad p \exp\left(\frac{-q}{\sin\theta}\right)$ high-angle (Suortti)

Combined Analysis approach

XRD-XRF-Raman-IR Combined Analysis

COD ←→ ROD

www.crystallography.net

solsa.crystallography.net/rod/

COD ID 1546383 ←→ ROD ID 1000002

Grazulis et al. J. Appl. Cryst. 42 (2009) 726

El Mendili et al. J. Appl. Cryst. 52 (2019) 618

XRR, EDP (dynamic correction), Raman ...

Combined Analysis cost function

$$WSS = \sum_{t=1}^{N_p} u_t \sum_{i=0}^{N_t} w_{it} (y_{itc} - y_{ito})^2$$

 w_{it} : weight for each pattern (usually 1/y_i = σ^2) u_t : weight for each pattern set t (XRD, XRF ...)

EMT nanocrystalline zeolite

Ng et al. Science 335 (2012) 70

Carbon microfibre

1 fibre (7 microns diameter): CCD Kappa diffractometer

Planar texture Component Ufer turbostractic model

	A(nm)	C(nm)	Orientation	Max 001	Crystallite	Crystallite	Global
			FWHM(°)	pole	size along	size along	microstrain
				figure	c (nm)	a (nm)	(rms)
				(m.r.d.)			
C1B1	0.23589(7)	0.6821(1)	21.6(1)	1.95	2.1(4)	2.2(4)	0.0152(10)
C2B1	0.23746(5)	0.68915(8)	18.75(6)	2.05	2.3(2)	2.5(2)	0.0154(11)
C3B1	0.23734(5)	0.69233(9)	18.63(6)	2.04	2.4(3)	2.7(5)	0.0136(6)
C3B2	0.23716(4)	0.69389(9)	19.87(7)	1.98	2.4(4)	2.5(4)	0.0150(4)
C3B3	0.23656(4)	0.68980(8)	19.16(6)	1.99	2.5(6)	2.3(5)	0.0168(8)

Turbostratic phyllosilicate aggregates

Minimum experimental requirements

1D or 2D Detector + 4-circle diffractometer (CRISMAT – ANR EcoCorail)

Instrument calibrationrientations+(peaks widths and shapes,
misalignments, defocusing ...)

~1000 experiments (2θ diagrams) in as many sample orientations

Mg_{0.75}Fe_{0.25}O high pressure experiments

E-WIMV + geo

a = 3.98639(3) Å <t> = 46.8(3) Å < ϵ > = 0.00535(1) σ_{33} = -861(3) MPa

EDP: Microstructure of nanocrystalline materials: TiO2 rutile

• quantitative analysis of electron diffraction ring pattern ?

FEI Tecnai G2 (300kV) with an Ultrascan 1000 (2048x2048 14µm pixels)

Paterns taken from +25° to -25° (step 5°) tilts: thin film prepared for TEM plan view

Boullay et al. Acta Cryst. A 70 (2014) 448

Combined XRR, XRD & GiXRF Analysis

XRR

Caby et al. Spec. Acta B 113 (2015) 132

Combined Measurement-Analysis XRD-XRF-Raman for SOLSA

Sequential Acquisition (on-mine real-time) Hyperspectral **XRD** XRF Raman IR 3D imaging 247 m 247.25 m Sonic ID2A and B drilling Distance along section (mm) Conveyor **Open Databases:** Global XRD-XRF-Raman-IR COD **Full-Profile Search-Match** TCOD QPA – chemical analysis ROD **Combined Analysis**

or Combined Measurements and Analysis:

First Combined XRD-XRF-Raman Measurement (CRISMAT-CNRS Feb. 2018)

Case study 1: siliceous breccia

Case study 2: serpentinized harsburgite

Coarse – medium grains Composed of orthopyroxene, olivine, serpentine

Lizardite: 76.5 % Forsterite: 15.8 % Enstatite: 7.7%

El Mendili et al. Earth & Space Chem. (2019)

Case study 3: Dunite

Solsa Expert System software, version 1.0: select the database or the phases in the Crystal Structures Tree View before running the Search-Match analysis

Combined Analysis Workshop series: Next one in Caen 24th – 28th June 2024 <u>chateigner.ensicaen.fr/formation/</u>

Thanks!

COMBIX: Chair of Excellence

FURNACE DAME ECOCORAIL SEMOME

SMAM