Combined Analysis: a global approach for characterization using ray scattering: structure, texture, stress, nanocrystals, phase, reflectivity, fluorescence ...

D. Chateigner, L. Lutterotti Normandie Université, Univ. Trento

Normandie Université

Leicester, UK, 11-12th Jul. 2017

Rietveld: Acta Cryst. (1967), J. Appl. Cryst (1969) computers, neutrons (Gaussian peaks): powders ! Lutterotti, Matthies, Wenk: Rietveld Texture Analysis, J. Appl. Phys. (1997) classical Rietveld + QTA (WIMV) Morales, Chateigner, Lutterotti, Ricote: Mat. Sci. For. (2002) Rietveld of layers (QTA, QMA) + E-WIMV ESQUI EU FP6 project (ended Jan. 2003) Lutterotti, Chateigner, Ferrari, Ricote: Thin Sol. Films (2004) E-WIMV + RSA + XRR + Geom. Mean: Extended Rietveld

Chateigner, Combined Analysis, Wiley-ISTE (2010)

Soon in International Tables Vol H

Boullay, Lutterotti, Chateigner, Sicard: Acta Cryst A (2014) Electron Diffraction Pattern – 2-waves Blackman correction

asymmetry

Rietveld: extended to lots of spectra

 $y_{c}(\mathbf{y}_{\mathbf{S}},\theta,\eta) = y_{b}(\mathbf{y}_{\mathbf{S}},\theta,\eta) + I_{0} \sum_{i=1}^{N_{L}} \sum_{\Phi=1}^{N_{\Phi}} \frac{v_{i\Phi}}{V_{c\Phi}^{2}} \sum_{h} Lp(\theta) j_{\Phi h} |F_{\Phi h}|^{2} \Omega_{\Phi h}(\mathbf{y}_{\mathbf{S}},\theta,\eta) P_{\Phi h}(\mathbf{y}_{\mathbf{S}},\theta,\eta) A_{i\Phi}(\mathbf{y}_{\mathbf{S}},\theta,\eta)$

Texture:

$$P_{h}(\mathbf{y}_{S}) = \int_{\widetilde{\varphi}} f(g,\widetilde{\varphi}) d\widetilde{\varphi}$$

E-WIMV, components, Harmonics, Exp. Harmonics ...

Strain-Stress:

$$\left\langle S\right\rangle_{geo}^{-1} = \left[\prod_{m=1}^{N} S_{m}^{\mathbf{v}_{m}}\right]^{-1} = \prod_{m=1}^{N} S_{m}^{-\mathbf{v}_{m}} = \prod_{m=1}^{N} \left(S_{m}^{-1}\right)^{\mathbf{v}_{m}} = \left\langle S^{-1}\right\rangle_{geo} = \left\langle C\right\rangle_{geo}$$

Geometric mean, Voigt, Reuss, Hill ...

Layering:

$$A_{i\Phi} = \frac{v_{i\Phi} \sin \theta_i \sin \theta_o}{\overline{\mu}_i (\sin \theta_i + \sin \theta_o)} \left\{ 1 - e^{-\overline{\mu}_i \tau_i W} \right\} \prod_{k < i} e^{-\overline{\mu}_k \tau_k W}$$
$$W = \frac{1}{\sin \theta_i} + \frac{1}{\sin \theta_o}$$

Stacks, coatings, multilayers ...

Line Broadening:

Popa, Delft, Warren, Ufer: Crystallite sizes, shapes, microstrains, distributions 0D-3D defects, turbostratism

X-Ray Reflectivity (specular): Matrix, Parrat, DWBA, EDP ... X-Ray Fluorescence/GiXRF: De Boer Electron Diffraction Patterns: 2-waves Blackman

Combined Analysis approach

Minimum experimental requirements

1D or 2D Detector + 4-circles diffractometer (CRISMAT – ANR EcoCorail)

~1000 experiments (20 diagrams) in as many sample orientations

Instrument calibration (peaks widths and shapes, misalignments, defocusing ...)

XRD-XRF-Raman-FTIR Combined

Analysis (SOLSA EU projet)

Combined Analysis cost function

$$WSS = \sum_{t=1}^{N_p} u_t \sum_{i=0}^{N_t} w_{it} (y_{itc} - y_{ito})^2$$

For each pattern t: w_{it} : weight, usually $1/y_i = \sigma^2$.

u_t : weight of each pattern t should be used to adjust the importance we want to give to a particular technique or pattern with respect to the others

Independent measurements

Different wavelengths and rays

Reflectivity: thickness, roughness, electron density profiles

X-ray Fluorescence: composition

Spectroscopies: local structures (PDF, FTIR, Mossbauer ...), eventually anisotropic (P-EXAFS, ESR, Raman ...), Element profiles (SIMS, RBS ...) ...

Physical models: magnetisation, conductivity ...

Environments: applied fields

XRD Calibration

 LaB_6 , CeO_2 , KCl, ...

FWHM ($\omega, \chi, \phi, 2\theta, \eta, \kappa \dots$) 2θ shift gaussianity asymmetry misalignments ...

Minimization algorithms

- Can be fully used in the method (everywhere)
- Marquardt Least Squares (based on steepest decrease and Gauss-Newton)
 - Efficient, best with few parameters, near the solution
- Evolutionary computation (or genetic algorithm)
 - Slow, not efficient, requires a lot of resources
 - Unlimited number of parameters
 - Can start far from the solution
- Simulated annealing (the solution proceed like a random walk, but the walking step decreases as temperature decreases)
 - In between the Marquardt and evolutionary algorithms
- Simplex (generates n+1 starting solutions as vertices of a polygon, n number of parameters, and contract/expand the polygon around the minima)
 - Slow on convergence
 - Remains close to the solution, but explore more minima with respect to the Marquardt

Full-Pattern Search-Match

maud.radiographema.com www.iutcaen.unicaen.fr

Diffraction pattern and sample composition	
Upload diffraction pattern: Parcourir_	
Atomic elements in the sample: O AI Ca F Zn	
Sample nanocrystalline	
Experiment details Radiation: X-ray tube: Cu ▼ Other: x-ray ▼ Wavelength (Å): 1.540598 	
 Other (1), 10,0000 Instrument geometry: Bragg-Brentano (theta-2theta) Bragg-Brentano (2theta only), omega: 10 Debye-Scherrer Transmission 	
Instrument broadening function: Medium	
Search and quantify Extra output (for debugging) Structures database: CODstructures •	

30s later >375000 COD structures

Found pha	ases and	quantification:
-----------	----------	-----------------

Phase ID	name	vol. (%)	wt. (%)	crystallites (Å)	microstrain
9004178	Zincite	16.8284	23.9708	2148.26	0.00028435
9009005	Fluorite	42.5522	33.9388	2117.08	0.000363147
9007498	Corundum	37.2197	37.2493	1889.82	0.000267779
2300112	zinc_oxide	3.39971	4.84114	1754.74	6.98311e-05

Final Rietveld analysis, Rw: 0.159468, GofF: 1.95869

Line Broadening: Crystallite sizes, shapes, µstrains, distributions

Texture helps the "real" mean shape determination

Symmetrised spherical harmonics

 $<\mathbf{R_{h}}>=\mathbf{R_{0}}+\mathbf{R_{1}}\mathbf{P_{2}}^{0}(\mathbf{x})+\mathbf{R_{2}}\mathbf{P_{2}}^{1}(\mathbf{x})\mathbf{cos}\boldsymbol{\varphi}+\mathbf{R_{3}}\mathbf{P_{2}}^{1}(\mathbf{x})\mathbf{sin}\boldsymbol{\varphi}+\mathbf{R_{4}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{cos}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{$

 $< \epsilon_{\mathbf{h}}^{2} > E_{\mathbf{h}}^{4} = E_{1}h^{4} + E_{2}k^{4} + E_{3}\ell^{4} + 2E_{4}h^{2}k^{2} + 2E_{5}\ell^{2}k^{2} + 2E_{6}h^{2}\ell^{2} + 4E_{7}h^{3}k + 4E_{8}h^{3}\ell + 4E_{9}k^{3}h + 4E_{10}k^{3}\ell + 4E_{11}\ell^{3}h + 4E_{12}\ell^{3}k + 4E_{13}h^{2}k\ell + 4E_{14}k^{2}h\ell + 4E_{15}\ell^{2}kh$

EMT nanocrystalline zeolite

Ng, Chateigner, Valtchev, Mintova: Science 335 (2012) 70

Irradiated FluorApatite (FAp) ceramics

Self-recrystallisation under irradiation, depending on SiO_4 / PO_4 ratio (FAp / Nd-Britholite) and on irradiating species

TEM of FAp irradiated with 70 MeV, 10¹² Kr cm⁻² ions

texture corrected, 10¹³ Kr cm⁻²

Virgin, with texture correction

Virgin, no texture correction

Fluence	Vc/V	А	с	<t></t>	Δ_{a/a_0}	Δ_{c/c_0}	R _w	R _B
(ions.cm ⁻²)	(%)	(Å)	(Å)	(nm)	(%)	(%)	(%)	(%)
0	100	9.3365(3)	6,8560(5)	294(22)	-	-	14.6	9.1
			Kr	•				
10^{11}	100	-	-	-	-	-		
10^{12}	100	-	-	-	-	-		
5.10 ¹²	49(1)	9.3775(9)	6.8912(8)	294(20)	0.44	0.53	24	15
10 ¹³	20(1)	9.4236(5)	6.9105(5)	291(20)	0.94	0.82	9.9	6
5.10^{13}	14(1)	9.3160(4)	6.8402(5)	294(22)	-0.21	-0.22	10.5	5.9
Ι								
10 ¹¹	-	-	-	-	-	-		
5.10 ¹¹	86(2)	9.3603(3)	6.8790(5)	90(10)	0.26	0.35	23.9	15.1
10^{12}	-	-	-	-	-	-		
3.10^{12}	47(2)	9.3645(3)	6.8840(5)	91(6)	0.30	0.42	13.3	9
5.10 ¹²	29.2(5)	9.3765(5)	6.8881(6)	77(11)	0.44	0.48	10.4	7.3
10 ¹³	13.2(2)	9.3719(4)	6.8857(6)	82(9)	0.38	0.45	6.7	4.9

Single impact model associated to crystal size reduction Cell parameters and volume increase, then relax

Amorphisation / recrystallisation competition: single or double impact

Amorphous/crystalline volume fraction (damaged fraction Fd = Va / V) as determined by x-ray diffraction

Mullite-silica composites

ODF: $R_w = 4.87 \%$, $R_B = 4.01 \%$ Rietveld: $R_w = 12.90 \%$, GoF = 1.77 Mullite: a = 7.56486(5) Å; b = 7.71048(5) Å; c = 2.89059(1)Å

Uniaxially pressed

Centrifugated

Texture of amphiboles collected at places and in in lithologic types

White mica and chlorite partially replace amphibole or fill small fractures with quartz and carbonates

Combined approach allows to access pole figures for most of the rock-forming minerals (even for mica)

Degree of fabric evolution due to: - deformation partitioning at metric-scale - degree of chemical changes within amphiboles - evolving metamorphic conditions during Alpine subduction (60-100 Million years).

Carbon nanofibre

1 fibre (7 microns diameter): CCD Kappa diffractometer

Planar texture Component Ufer turbostratic model

	A(nm)	C(nm)	Orientation	Max 001	Crystallite	Crystallite	Global
			FWHM(°)	pole	size along	size along	microstrain
				figure	c (nm)	a (nm)	(rms)
				(m.r.d.)			
C1B1	0.23589(7)	0.6821(1)	21.6(1)	1.95	2.1(4)	2.2(4)	0.0152(10)
C2B1	0.23746(5)	0.68915(8)	18.75(6)	2.05	2.3(2)	2.5(2)	0.0154(11)
C3B1	0.23734(5)	0.69233(9)	18.63(6)	2.04	2.4(3)	2.7(5)	0.0136(6)
C3B2	0.23716(4)	0.69389(9)	19.87(7)	1.98	2.4(4)	2.5(4)	0.0150(4)
C3B3	0.23656(4)	0.68980(8)	19.16(6)	1.99	2.5(6)	2.3(5)	0.0168(8)

Turbostratic phyllosilicate aggregates

Mg_{0.75}Fe_{0.25}O high pressure experiments

E-WIMV + geo

a = 3.98639(3) Å <t> = 46.8(3) Å < ϵ > = 0.00535(1) σ_{33} = -861(3) MPa

LiNbO₃

- Predict macroscopic anisotropic properties: BAW

Propagation equation

$$\rho \frac{\partial^2 u^i}{\partial t^2} = \left[\mathbf{C}^{\mathrm{i}\ell \mathrm{mn}} \right] \frac{\partial^2 u_n}{\partial x^m \partial x^\ell}$$

Cubic crystal system

	$c_{11} \text{ or } c_{11}^{M}$	$c_{12} \text{ or } c_{12}^{M}$	$c_{13} \text{ or } c_{13}^{M}$	$c_{14} \text{ or } c_{14}^{M}$	$c_{33} \text{ or } c_{33}^{M}$	$c_{44} \text{ or } c_{44}^{M}$
Single crystal	201	54.52	71.43	8.4	246.5	60.55
LiNbO ₃ /Si	206.4	68.5	67.6	0.48	216.5	64
LiNbO ₃ /Al ₂ O ₃	204	65.7	69.7	1.1	219.9	63.2

ErMn₃Fe₉C ferrimagnet

Predict macroscopic anisotropic properties: Magnetisation

$$\frac{M_{\perp}}{M_{\rm S}} = 2\pi \int_{0}^{\frac{\pi}{2}} (1 - \rho_0) PV(\theta_{\rm g}) \sin\theta_{\rm g} \cos(\theta_{\rm g} - \theta) d\theta_{\rm g} + \rho_0 M_{\rm random}$$

max {001}: 3.9 mrd min: 0.5 mrd

EDP Combined Analysis

QTA: local vs global Pt thin film on Si

a) 6 µm diameter selected area, b) EPD and c) 2D plot.

d) 0.5 µm diameter selected area, e) EPD and f) 2D plot

Combined XRR, XRD & GiXRF Analysis

XRR

GiXRF

XRD-XRF-Raman-IR Combined Analysis

Why not more ?

A lot of problems can be solved!

Texture helps to resolve them: good for real samples

Anisotropy favours higher resolutions

Combined analysis may be a solution, unless you can destroy your sample or are not interested in macroscopic anisotropy ...

If you think you can destroy it, perhaps think twice

Combined Analysis Workshop series:

www.ecole.ensicaen.fr/~chateign/formation/

Thanks!

FURNACE	DAME
ECOCORAIL	SEMOME

SMAM

ESQUI SOLSA

MEET MIND Xmat **COSTs**

COMBIX: Chair of Excellence