

Combined Analysis of thin structures: structure, microstructure, texture, stresses, phase, nanocrystals ...

at once in a single approach !

Daniel Chateigner, L. Lutterotti, M. Morales, Ph. Boullay IUT-UCBN, CRISMAT-CIMAP Univ. Trento

Geo-Bio Center 14th June 2012, Munchen

Structure determination on real (textured) samples Problem 1

Structure and QTA: correlations ?

f(g) and $|F_h|^2$ are different !

f(g):

-Angularly constrained: [h₁k₁l₁]* and [h₂k₂l₂]* make a given angle: more determined if F² high
- lot of data (spectra) needed

 $|F_{h}|^{2}$:

- -Position, f_i, and Debye-Waller constrained
- work on the sum of all diagrams on average

Texture from Spectra

Le Bail extraction + ODF: WMV, E-WIMV, Generalized spherical harmonics, components, ADC, entropy maximisation ...

Why not benefit of texture in Structure determination ?

- Perfect powders:
- overlaps (intra- and inter-r
- no angular constrain
 - nstrain max angular constrains
- anisotropy difficult to resc Perfect texture: max anisotropy

Single pattern

Many individual diffracted peaks

Single crystals:

- reduced overlaps

Textured powders: - reduced overlaps - angular constrain = f(texture strength) - Intermediate anisotropy

Many patterns to measure and analyse

Rietveld-Structure

 $y_{c}(\mathbf{y}_{\mathbf{S}},\theta,\eta) = y_{b}(\mathbf{y}_{\mathbf{S}},\theta,\eta) + I_{0} \sum_{i=1}^{N_{L}} \sum_{\Phi=1}^{N_{\Phi}} \frac{v_{i\Phi}}{V_{c\Phi}^{2}} \sum_{h} Lp(\theta) j_{\Phi h} |F_{\Phi h}|^{2} \Omega_{\Phi h}(\mathbf{y}_{\mathbf{S}},\theta,\eta) P_{\Phi h}(\mathbf{y}_{\mathbf{S}},\theta,\eta) A_{i\Phi}(\mathbf{y}_{\mathbf{S}},\theta,\eta)$

Texture

$$P_k(\chi,\phi) = \int_{\varphi} f(g,\varphi) d\varphi$$

• Generalized Spherical Harmonics (Bunge):

$$P_{k}(\chi,\phi) = \sum_{l=0}^{\infty} \frac{1}{2l+1} \sum_{n=-l}^{l} k_{l}^{n}(\chi,\phi) \sum_{m=-l}^{l} C_{l}^{mn} k_{n}^{*m}(\Theta_{k}\phi_{k}) \qquad f(g) = \sum_{l=0}^{\infty} \sum_{m,n=-l}^{l} C_{l}^{mn} T_{l}^{mn}(g)$$

• Components (Helming):

$$f(g) = F + \sum_{c} I^{c} f^{c}(g)$$

• WIMV (William, Imhof, Matthies, Vinel) iterative process:

$$f^{n+1}(g) = N_n \frac{f^n(g)f^0(g)}{\left(\prod_{\mathbf{h}=1}^{I} \prod_{m=1}^{M_h} P_{\mathbf{h}}^n(\mathbf{y})\right)^{\frac{1}{IM_h}}}$$

$$f^{0}(g) = N_{0} \left(\prod_{h=1}^{I} \prod_{m=1}^{M_{h}} P_{h}^{exp}(\mathbf{y}) \right)^{\frac{1}{IM_{h}}}$$

E-WIMV (Rietveld only):

with 0 < r_n < 1, relaxation parameter, M_h number of division points of the integral around k, w_h reflection weight

• Entropy maximisation (Schaeben):

$$f^{n+1}(g) = f^{n}(g) \prod_{m=1}^{M_{h}} \left(\frac{P_{h}(\mathbf{y})}{P_{h}^{n}(\mathbf{y})}\right)^{r_{n}} \frac{W_{h}}{M_{h}}$$

$$f^{n+1}(g) = f^{n}(g) \prod_{m=1}^{M_{h}} \left(\frac{P_{h}(\mathbf{y})}{P_{h}^{n}(\mathbf{y})} \right)^{\frac{T_{n}}{M_{h}}}$$

 arbitrarily defined cells (ADC, Pawlik): Very similar to E-WIMV, with integrals along path tubes

Residual Stresses shift peaks with y Problem 2

Stress and QTA: correlations ? f(g) and <C_{ijkl}>

f(g):

- Moves the $sin^2\Psi$ law away from linear relationship
- Needs the integrated peak (full spectra)

strains:

- Measured with pole figures
- needs the mean peak position

Isotropic samples: triaxial, biaxial, uniaxial stress states Textured samples: Reuss, Voigt, Hill, Bulk geometric mean approaches

Residual Stresses and Rietveld

Isotropic samples: triaxial, biaxial, uniaxial stress states Textured samples: Reuss, Voigt, Hill, Bulk geometric mean approaches

Strain-Stress

$$\epsilon(\mathbf{X}) = \epsilon^{\mathrm{I}} + \epsilon^{\mathrm{II}}(\mathbf{X}) + \epsilon^{\mathrm{III}}(\mathbf{X})$$

$$\begin{split} \left\langle S \right\rangle_{geo}^{-1} &= \exp\left[-\sum_{m=1}^{N} \nu_m \ln S_m\right] = \exp\left[\sum_{m=1}^{N} \nu_m \ln S_m^{-1}\right] = \left\langle S^{-1} \right\rangle_{geo} = \left\langle C \right\rangle_{geo} \\ \text{or} \\ \left\langle S \right\rangle_{geo}^{-1} &= \left[\prod_{m=1}^{N} S_m^{\nu_m}\right]^{-1} = \prod_{m=1}^{N} S_m^{-\nu_m} = \prod_{m=1}^{N} \left(S_m^{-1}\right)^{\nu_m} = \left\langle S^{-1} \right\rangle_{geo} = \left\langle C \right\rangle_{geo} \end{split}$$

<u>Layered systems</u> <u>Problem 3</u>

Layer, Rietveld and QTA: correlations: f(g), thicknesses and structure

f(g):

- Pole figures need corrections for abs-vol
- Rietveld also to correct intensities

layers:

- unknown sample true absorption coefficient μ
- unknown effective thickness (porosity)

Layering

Asymmetric Bragg-Brentano

$$C_{\chi}^{\text{top film}} = g_1 \left(1 - \exp\left(-\mu T g_2 / \cos\chi\right) \right) / \left(1 - \exp\left(-2\mu T / \sin\omega\cos\chi\right) \right)$$
$$C_{\chi}^{\text{cov.layer}} = C_{\chi}^{\text{top film}} \left(\exp\left(-g_2 \sum \mu_i' T_i' / \cos\chi\right) \right) / \left(\exp\left(-2\sum \mu_i' T_i' / \sin\omega\cos\chi\right) \right)$$

Phase and Texture

Problem 4

Phase and QTA: correlations: f(g), S_{Φ}

f(g):

- angular relationships
- plays on individual spectra
- essential to operate on textured sample

 S_{Φ} :

- plays on overall scale factor (sum diagram)

Phase analysis

• Volume fraction

$$V_{\Phi} = \frac{S_{\Phi}V_{uc\Phi}^2}{\displaystyle\sum_{\Phi} \left(S_{\Phi}V_{uc\Phi}^2\right)_{\Phi}}$$

• Weight fraction

$$m_{\Phi} = \frac{S_{\Phi} Z_{\Phi} M_{\Phi} V_{uc\Phi}^2}{\sum_{\Phi} \left(S_{\Phi} Z_{\Phi} M_{\Phi} V_{uc\Phi}^2 \right)_{\Phi}}$$

Z = number of formula units M = mass of the formula unit V = cell volume

<u>How it works</u>

Le Bail extraction

$$T_{hkl}^{k} = T_{hkl}^{k-1} \frac{\sum_{i} I_{i}^{exp} S_{hkl}^{i}}{\sum_{i} I_{i}^{calc} S_{hkl}^{i}}$$

- Starts with nominal intensities (T_{hkl})
- Computes the full pattern (Icalc)
- Uses the formula to compute next T_{hkl}
- Cycle the last two steps until convergence
- In Maud, options:
 - Only few cycles for texture (3-5) necessary
 - The range for the weighting of the profile can be reduced
 - Background subtracted or not

Structure and Residual Stresses (shift peaks with y) Problem 5

Stress and cell parameters: correlations: peak positions and C_{ijkl}

Cell parameters:

- Measured at high angles
- Bragg law evolution

strains:

- Measured precisely at high angles
- stiffness-based variation, also with Ψ

<u>Shapes, microstrains, defaults, distributions</u> <u>Problem 6</u>

Shapes and stress-texture-structure: correlations ?

Shapes ...:

- line broadening problem
- average positions modified
- if anisotropic: modification changes with \boldsymbol{y}

Stress-texture-structure:

- need "true" peak positions and intensities
- need deconvoluted signals

Anisotropic sizes and microstrains

- Texture helps the "real" mean shape determination
- Determination by peak deconvolution + Popa formalism

$$<\mathbf{R_{h}} > = \mathbf{R_{0}} + \mathbf{R_{1}}\mathbf{P_{2}}^{0}(\mathbf{x}) + \mathbf{R_{2}}\mathbf{P_{2}}^{1}(\mathbf{x})\mathbf{cos}\boldsymbol{\varphi} + \mathbf{R_{3}}\mathbf{P_{2}}^{1}(\mathbf{x})\mathbf{sin}\boldsymbol{\varphi} + \mathbf{R_{4}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{cos}2\boldsymbol{\varphi} + \mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi} + \\ < \mathbf{\epsilon_{h}}^{2} > \mathbf{E_{h}}^{4} = \mathbf{E_{1}}\mathbf{h}^{4} + \mathbf{E_{2}}\mathbf{k}^{4} + \mathbf{E_{3}}\ell^{4} + 2\mathbf{E_{4}}\mathbf{h}^{2}\mathbf{k}^{2} + 2\mathbf{E_{5}}\ell^{2}\mathbf{k}^{2} + 2\mathbf{E_{6}}\mathbf{h}^{2}\ell^{2} + 4\mathbf{E_{7}}\mathbf{h}^{3}\mathbf{k} + 4\mathbf{E_{8}}\mathbf{h}^{3}\ell + 4\mathbf{E_{9}}\mathbf{k}^{3}\mathbf{h} + \\ 4\mathbf{E_{10}}\mathbf{k}^{3}\ell + 4\mathbf{E_{11}}\ell^{3}\mathbf{h} + 4\mathbf{E_{12}}\ell^{3}\mathbf{k} + 4\mathbf{E_{13}}\mathbf{h}^{2}\mathbf{k}\ell + 4\mathbf{E_{14}}\mathbf{k}^{2}\mathbf{h}\ell + 4\mathbf{E_{15}}\ell^{2}\mathbf{k}\mathbf{h}$$

Gold thin films

Crystallite size (Å)	Film thickness									
along	10nm	15nm	20nm	25nm	35nm	40nm				
[111]	176	153	725	254	343	379				
[200]	64	103	457	173	321	386				
[202]	148	140	658	234	337	381				

10 nm

15 nm

20 nm

25 nm

35 nm

40 nm

EMT nanocrystalline zeolite

Ng, Chateigner, Valtchev, Mintova: Science 335 (2012) 70

Combined Analysis approach

<u>Grinding to powderise</u> <u>another problem !</u>

Grinding: removes angular relationship, adds correlations

Texture:

- not measured
- removed ? hope to get a perfect powder Strains, defaults, anisotropy ... :
- some removed, some added

Same sample ? Rare samples ?

Minimum experimental requirements

1D or 2D Detector + 4-circle diffractometer (X-rays and neutrons) CRISMAT, ILL

~1000 experiments (2θ diagrams) in as many sample orientations

+

Instrument calibration (peaks widths and shapes, misalignments, defocusing ...)

2D Curved Area Position Sensitive Detector

D19 - ILL

~100 experiments (2D Debye-Scherrer diagrams) in as many sample orientations

Calibration

KCl, $LaB_6 \dots$

FWHM ($\omega, \chi, 2\theta, \eta \dots$) 2 θ shift gaussianity asymmetry misalignments ...

Minimization algorithms

- Can be fully used in the method (everywhere)
- Marquardt Least Squares (based on steepest decrease and Gauss-Newton)
 - Efficient, best with few parameters, near the solution
- Evolutionary computation (or genetic algorithm)
 - Slow, not efficient, requires a lot of resources
 - Unlimited number of parameters
 - Can start far from the solution
- Simulated annealing (the solution proceed like a random walk, but the walking step decreases as temperature decreases)
 - In between the Marquardt and evolutionary algorithms
- Simplex (generates n+1 starting solutions as vertices of a polygon, n number of parameters, and contract/expand the polygon around the minima)
 - Slow on convergence
 - Remains close to the solution, but explore more minima with respect to the Marquardt

Ca₃Co₄O₉ thermoelectrics

Ca₃Co₄O₉: Misfit lamellar and modulated Structure, with high thermopower

Two monoclinic sub-systems: S1 with $a \sim 4.8$ Å, $b_1 \sim 4.5$ Å, $c \sim 10.8$ Å et $\beta \sim 98^{\circ}$ (NaCl-type) S2 with $a \sim 4.8$ Å, $b_2 \sim 2.8$ Å, $c \sim 10.8$ Å et $\beta \sim 98^{\circ}$ (CdI₂₋type)

RP=19.7%, Rw=11.9%

Bi2223 compounds E. Guilmeau, PhD

Grain alignment \Rightarrow / Jc

(00 ℓ) Texture

Combined Analysis

-Neutrons -Sample: ~70 mm³ -2 θ patterns for χ =0° to 90° -No ϕ rotation (fibre texture).

Rw=9.12 RP=16.24

Effect of the sinter-forging treatment on the texture development, crystal growth, transport properties

Sinter- forging dwell	Orientatior M (m	Orientation Distribution Max (m.r.d.)		Cell parameters (Å)		Crystallite size Bi2223	Rb	Rw (%)	Rexp	RP0	RP1	J _c (A (cm ²)
time (h)	Bi2212	Bi2223 Bi2223 Bi2222 (nm)	(nm)	(70)	(70)	(70)	(70)	(70)				
20	21.8	20.7	59.9±1.3	a=5.419(3) b=5.391(3) c=37.168(3)	a=5.414(3) b=5.393(3) c=30.800(3)	205±7	7.56	11.1	4.55	17.74	10.56	12500
50	24.1	24.4	72.9±2.9	a=5.419(3) b=5.408(3) c=37.192(3)	a=5.416(3) b=5.396(3) c=30.806(3)	273±10	7.54	11.37	4.58	17.05	11.04	15000
100	31.5	25.2	84.4±4.6	a=5.410(3) b=5.405(3) c=37.144(3)	a=5.412(3) b=5.403(3) c=30.752(3)	303±10	5.4	8.04	3.69	13.54	9.31	19000
150	65.4	27.2	87.0±4.1	a=5.417(3) b=5.403(3) c=37.199(3)	a=5.413(3) b=5.407(3) c=30.792(3)	383±13	6.13	9.12	4.8	16.24	12.25	20000

Ferroelectric PCT films

J. Ricote, Madrid

thin films:

 $(Ca_{0.24}Pb_{0.76})TiO_3$ sol-gel synthesised solutions deposited by spin coating on a substrate of Pt/TiO₂/Si, with and without a treatment at 650°C for 30 min.

All films are crystallised at 700°C for 50 s by Rapid Thermal Processing (RTP; 30°C/s). A series is also recrystallised at 650°C for 1 to 3 h.

a = 3.9108(1) Å T = 457(3) Å t_{iso} = 458(3) Å $\epsilon' = 0.0032(1)$ rms a = 3.9156(1) Å c = 4.0497(3) Å T = 2525(13) Å t_{iso} = 390(7) Å $\epsilon = 0.0067(1)$ rms

 $R_W = 13\%; R_B = 12\%; R_{exp} = 22\%.(Rietveld)$ $R_W = 5\%; R_B = 6\% (E-WIMV)$

Atom	Occupancy	Х	У	Z
Pb	0.76	0.0	0.0	0.0
Ca	0.24	0.0	0.0	0.0
Ti	1.0	0.5	0.5	0.477(2)
O1	1.0	0.5	0.5	0.060(2)
02	1.0	0.0	0.5	0.631(1)

Compliance	PbTiO ₃	Film	PCT-Si	PLT	PCT-Mg
coefficients	single crystal	random	<001>	<001>	<001>
$[10^{-3} \text{ GPa}^{-1}]$	(data set A)	orientation	contrib≈17%	contrib.≈49%	contrib.≈68%
S ₁₁	6.5	10.1	10.5	10.0	9.7
s ₂₂	6.5	10.0	10.5	10.0	9.7
S ₃₃	33.3	9.8	9.0	10.3	11.3
S ₄₄	14.5	13.2	12.8	12.9	13.1
S 55	14.5	13.2	12.8	13.0	13.1
S ₆₆	9.6	13.4	14.0	13.5	12.7
S ₁₂	-0.35	-3.3	-3.5	-3.2	-3.0
S ₂₁	-0.35	-3.3	-3.5	-3.2	-3.0
S ₁₃	-7.1	-3.2	-3.1	-3.4	-3.6
S ₃₁	-7.1	-3.2	-3.1	-3.4	-3.6
S ₂₃	-7.1	-3.2	-3.1	-3.4	-3.6
S ₃₂	-7.1	-3.2	-3.1	-3.4	-3.6
s ₃₃ /s ₁₁	5.1	0.97	0.86	1.03	1.16
s_{13}/s_{12}	20.3	0.97	0.89	1.06	1.20

Geometric mean average + biaxial stress state

Ferroelectric PMN-PT films J. Ricote, DMF-Madrid

<u>Pt</u>

a = 3.91172(1) Å T = 583(5) Å t_{iso} = 960(1) Å ε = 0.0032(1) rms σ_{11} = 0.639(1) GPa σ_{22} = 0.651(1) GPa σ_{12} = -0.009(1) GPa

Pb_{0.7} (Mg_{1/3}Nb_{2/3})O₃-Pb_{0.3}TiO₃ /TiO₂/Pt/Si-(100)

AIN/Pt/TiOx/AI2O3/Ni-Co-Cr-AI

Rw (%) = 24.120445 Rexp (%) = 5.8517213 T(AIN) = 14270(3) nmT(Pt) = 430(3) nm

 (χ, φ) randomly selected diagrams

AI_2O_3

a = 4.7562(6) Å c = 12.875(3) Å T= 7790(31) nm <t> = 150(2) Å <ε> = 0.008(3)

a = 3.569377(5) Å <t> = 7600(1900) Å < ϵ > = 0.00236(3) σ_{11} = -328(8) MPa σ_{22} = -411(9) MPa

101

102

100

002

a = 3.11203(1) Å c = 4.98252(1) Å T = 14270(3) nm <t> = 2404(8) Å < ϵ > = 0.001853(2) σ_{11} = -1019(2) MPa σ_{22} = -845(2) MPa

Rw (%) = 33.3

a = 3.91198(1) Å T = 1204(3) nm <t> = 2173(10) Å < ϵ > = 0.002410(3) σ_{11} = -196.5(8) σ_{22} = -99.6(6)

Rw (%) = 4.1

Substrate bias vs stress-texture evolution

Si nanocrystalline thin films M. Morales, Caen

Silicon thin films deposition by reactive magnetron sputtering: bower density 2W/cm² 4 total pressure: $p_{total} = 10^{-1}$ Torr \clubsuit plasma mixture: H₂ / Ar, pH₂ / p_{total} = 80 % 🗞 temperature: 200°C \Rightarrow substrates: amorphous SiO₂ (a-SiO₂) (100)-Si single-crystals target-substrate distance (d) • $a-SiO_2$ substrates: d = 4, 6, 7, 8, 10, 12 cm films A, B, C, D, E, F • (100)-Si: d = 6, 12 cmfilms G, H

Aim: quantum confinement, photoluminescence properties

Typical refinement

broad, anisotropic diffracted lines, textured samples

Refinement Results

			RX	Anisot	tropic si	zes (Å)	T	Texture parameters				Reliability factors (%)				
Sample	d (cm)	a (Å)	thickness				Maximum	minimum	Texture index	RP ₀	R _w	R _B	R _{exp}			
			(nm)	<111>	<220>	<311>	(m.r.d.)	(m.r.d.)	F ² (m.r.d ²)							
Α	4	5.4466 (3)		94	20	27	1.95	0.4	1.12	1.72	4.0	3.7	3.5			
В	6	5.4439 (2)	711 (50)	101	20	22	1.39	0.79	1.01	0.71	4.9	4.3	4.2			
С	7	5.4346 (4)	519 (60)	99	40	52	1.72	0.66	1.05	0.78	4.3	4.0	3.9			
D	8	5.4461 (2)	1447 (66)	100	22	33	1.57	0.63	1.04	0.90	5.5	4.6	4.5			
E	10	5.4462 (2)	1360 (80)	98	20	25	1.22	0.82	1.01	0.56	5.0	3.9	4.0			
F	12	5.4452 (3)	1110 (57)	85	22	26	1.59	0.45	1.05	1.08	4.2	3.5	3.7			
G	6	5.4387 (3)	1307 (50)	89	22	28	1.84	0.71	1.01	1.57	5.2	4.7	4.2			
Н	12	5.4434 (2)	1214 (18)	88	22	24	2.77	0.50	1.12	2.97	5.0	4.5	4.3			

Mean anisotropic shape

Schematic of the mean crystallite shape for Sample D represented in a cubic cell, as refined using the Popa approach and exhibiting a strong elongation along <111>, and TEM image

XRR: Roughness governed

AFM: homogeneous roughness

Refractive index linked to film porosities: Larger target-sample distances: increased compacity due to lower nanopowder filling

Irradiated FluorApatite (FAp) ceramics

Self-recrystallisation under irradiation, depending on SiO_4 / PO_4 ratio (FAp / Nd-Britholite) and on irradiating species

TEM of FAp irradiated with 70 MeV, 10¹² Kr cm⁻² ions

texture corrected, 10¹³ Kr cm⁻²

Virgin, with texture correction

Virgin, no texture correction

Fluence	Vc/V	A	с	<t></t>	Δ_{a/a_0}	Δ_{c/c_0}	R _w	R _B		
(ions.cm ⁻²)	(%)	(Å)	(Å)	(nm)	(%)	(%)	(%)	(%)		
0	100	9.3365(3)	6,8560(5)	294(22)	-	-	14.6	9.1		
Kr										
10^{11}	100	-	-	-	-	-				
10^{12}	100	-	-	-	-	-				
5.10^{12}	49(1)	9.3775(9)	6.8912(8)	294(20)	0.44	0.53	24	15		
10 ¹³	20(1)	9.4236(5)	6.9105(5)	291(20)	0.94	0.82	9.9	6		
5.10^{13}	14(1)	9.3160(4)	6.8402(5)	294(22)	-0.21	-0.22	10.5	5.9		
			Ι							
10^{11}	-	-	-	-	-	-				
5.10 ¹¹	86(2)	9.3603(3)	6.8790(5)	90(10)	0.26	0.35	23.9	15.1		
10 ¹²	-	-	-	-	-	-				
3.10^{12}	47(2)	9.3645(3)	6.8840(5)	91(6)	0.30	0.42	13.3	9		
5.10 ¹²	29.2(5)	9.3765(5)	6.8881(6)	77(11)	0.44	0.48	10.4	7.3		
10 ¹³	13.2(2)	9.3719(4)	6.8857(6)	82(9)	0.38	0.45	6.7	4.9		

Single impact model associated to crystal size reduction

Cell parameters and volume increase, then relax

Amorphisation / recrystallisation competition: single or double impact

Amorphous/crystalline volume fraction (damaged fraction Fd = Va / V) as determined by x-ray diffraction

Mullite-silica composites

ODF: $R_w = 4.87 \%$, $R_B = 4.01 \%$ Rietveld: $R_w = 12.90 \%$, GoF = 1.77 Mullite: a = 7.56486(5) Å; b = 7.71048(5) Å; c = 2.89059(1)Å

Uniaxially pressed

Centrifugated

for all (χ , ϕ) sample orientations

IRC layer of *Charonia lampas lampas* for selected (χ , ϕ) sample orientations

Turbostratic phyllosilicate aggregates

Specular reflectivity: **q**=(0,0,z)

• Fresnel:

$$R(\mathbf{q}) = \left| \frac{q_{z} - \sqrt{q_{z}^{2} - q_{c}^{2} + \frac{32i\pi^{2}\beta}{\lambda^{2}}}}{q_{z} + \sqrt{q_{z}^{2} - q_{c}^{2} + \frac{32i\pi^{2}\beta}{\lambda^{2}}}} \right|^{2} \delta q_{x} \delta q$$

• matrix:

$$R^{flat} = \frac{r_{0,1}^2 + r_{1,2}^2 + 2r_{0,1}r_{1,2}\cos 2k_{Z,1}h_{1,2}}{1 + r_{0,1}^2r_{1,2}^2 + 2r_{0,1}r_{1,2}\cos 2k_{Z,1}h_{1,2}}$$

 Born approximation: Electron Density Profile

$$R(q_z) = r \cdot r^* = R_F(q_z) \left| \frac{1}{\rho_s} \int_{-\infty}^{+\infty} \frac{d\rho(z)}{dz} e^{iq_z z} dz \right|^2$$

• Roughness:

$$R^{rough}(q_z) = R(q_z) \exp(-q_{z,0}q_{z,1}\sigma^2) \quad \text{Low-angles (reflectivity)}$$
$$S_R = 1 - p \exp(-q) + p \exp\left(\frac{-q}{\sin\theta}\right) \quad \text{high-angle (Suortti)}$$

Useful for having bot specular and off-specular signals in one scan

Microstructure of nanocrystalline materials: TiO₂ rutile ⁽¹⁾

► quantitative analysis of electron diffraction ring pattern ?

Why not more ?

Conclusions

- a) A lot of dilemma are only apparent
- b) Texture helps to resolve them: good for real samples
- c) Anisotropy favours higher resolutions
- d) Combined analysis may be a solution, unless you can destroy your sample or are not interested in macroscopic anisotropy ...
- e) If you think you can destroy it, perhaps think twice
- f) more information is always needed: why not more?
- g) Combined Analysis (D. Chateigner Ed), Wiley-ISTE 2010