

Une approche globale pour caractériser les matériaux massifs anisotropes: quelques exemples d'Analyse Combinée par diffractiondiffusion

D. Chateigner Normandie Université, IUT-Univ. Caen CRISMAT-CNRS, ENSICAEN

Normandie Université

Saint Gobain CREE, Cavaillon, 7th Feb. 2017

asymmetry

Rietveld: Acta Cryst. (1967), J. Appl. Cryst (1969) computers, neutrons (Gaussian peaks): powders ! Lutterotti, Matthies, Wenk: Rietveld Texture Analysis, J. Appl. Phys. (1997) classical Rietveld + QTA (WIMV) Morales, Chateigner, Lutterotti, Ricote: Mat. Sci. For. (2002) Rietveld of layers (QTA, QMA) + E-WIMV ESQUI EU FP6 project (ended Jan. 2003) Lutterotti, Chateigner, Ferrari, Ricote: Thin Sol. Films (2004) E-WIMV + RSA + XRR + Geom. Mean: Extended Rietveld

Chateigner, Combined Analysis, Wiley-ISTE (2010)

Soon in International Tables Vol H

Boullay, Lutterotti, Chateigner, Sicard: Acta Cryst A (2014) Electron Diffraction Pattern – 2-waves Blackman correction

Why not benefit of texture in Structure determination ?

- Perfect powders:
- overlaps (intra- and inter-r
- no angular constrain
 - nstrain max angular constrains
- anisotropy difficult to resc Perfect texture: max anisotropy

Single pattern

Many individual diffracted peaks

Single crystals:

- reduced overlaps

Textured powders: - reduced overlaps - angular constrain = f(texture strength) - Intermediate anisotropy

Many patterns to measure and analyse

Rietveld: extended to lots of spectra

 $y_{c}(\mathbf{y}_{\mathbf{S}},\theta,\eta) = y_{b}(\mathbf{y}_{\mathbf{S}},\theta,\eta) + I_{0} \sum_{i=1}^{N_{\perp}} \sum_{\Phi=1}^{N_{\Phi}} \frac{v_{i\Phi}}{V_{c\Phi}^{2}} \sum_{h} Lp(\theta) j_{\Phi h} |F_{\Phi h}|^{2} \Omega_{\Phi h}(\mathbf{y}_{\mathbf{S}},\theta,\eta) P_{\Phi h}(\mathbf{y}_{\mathbf{S}},\theta,\eta) A_{i\Phi}(\mathbf{y}_{\mathbf{S}},\theta,\eta)$

Texture:

$$P_{h}(\mathbf{y}_{S}) = \int_{\widetilde{\varphi}} f(g,\widetilde{\varphi}) d\widetilde{\varphi}$$

E-WIMV, components, Harmonics, Exp. Harmonics ...

Strain-Stress:

$$\left\langle S\right\rangle_{geo}^{-1} = \left[\prod_{m=1}^{N} S_{m}^{\nu_{m}}\right]^{-1} = \prod_{m=1}^{N} S_{m}^{-\nu_{m}} = \prod_{m=1}^{N} \left(S_{m}^{-1}\right)^{\nu_{m}} = \left\langle S^{-1}\right\rangle_{geo} = \left\langle C\right\rangle_{geo}$$

Geometric mean, Voigt, Reuss, Hill ...

Layering:

$$A_{i\Phi} = \frac{v_{i\Phi} \sin \theta_i \sin \theta_o}{\overline{\mu}_i (\sin \theta_i + \sin \theta_o)} \left\{ 1 - e^{-\overline{\mu}_i \tau_i W} \right\} \prod_{k < i} e^{-\overline{\mu}_k \tau_k W}$$
$$W = \frac{1}{\sin \theta_i} + \frac{1}{\sin \theta_o}$$

Stacks, coatings, multilayers ... Line Broadening:

Popa, Delft: Crystallite sizes, shapes, microstrains, distributions 0D-3D defects

X-Ray Reflectivity (specular): Matrix, Parrat, DWBA, EDP ... X-Ray Fluorescence/GiXRF: De Boer Electron Diffraction Patterns: 2-waves Blackman

Line Broadening: Crystallite sizes, shapes, µstrains, distributions

Texture helps the "real" mean shape determination

 $\left\langle R_{\vec{h}} \right\rangle = \sum_{\ell=0}^{L} \sum_{m=0}^{\ell} R_{\ell}^{m} K_{\ell}^{m}(\chi, \varphi)$

Symetrised spherical harmonics

 $K_{\ell}^{m}(\chi,\varphi) = P_{\ell}^{m}(\cos\chi)\cos(m\varphi) + P_{\ell}^{m}(\cos\chi)\sin(m\varphi)$

 $<\mathbf{R_{h}} > = \mathbf{R_{0}} + \mathbf{R_{1}}\mathbf{P_{2}}^{0}(\mathbf{x}) + \mathbf{R_{2}}\mathbf{P_{2}}^{1}(\mathbf{x})\mathbf{cos}\boldsymbol{\varphi} + \mathbf{R_{3}}\mathbf{P_{2}}^{1}(\mathbf{x})\mathbf{sin}\boldsymbol{\varphi} + \mathbf{R_{4}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{cos}2\boldsymbol{\varphi} + \mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}2\boldsymbol{\varphi} + \\ <\mathbf{\epsilon_{h}}^{2} > \mathbf{E_{h}}^{4} = \mathbf{E_{1}}\mathbf{h}^{4} + \mathbf{E_{2}}\mathbf{k}^{4} + \mathbf{E_{3}}\ell^{4} + 2\mathbf{E_{4}}\mathbf{h}^{2}\mathbf{k}^{2} + 2\mathbf{E_{5}}\ell^{2}\mathbf{k}^{2} + 2\mathbf{E_{6}}\mathbf{h}^{2}\ell^{2} + 4\mathbf{E_{7}}\mathbf{h}^{3}\mathbf{k} + 4\mathbf{E_{8}}\mathbf{h}^{3}\ell + 4\mathbf{E_{9}}\mathbf{k}^{3}\mathbf{h} + \\ 4\mathbf{E_{10}}\mathbf{k}^{3}\ell + 4\mathbf{E_{11}}\ell^{3}\mathbf{h} + 4\mathbf{E_{12}}\ell^{3}\mathbf{k} + 4\mathbf{E_{13}}\mathbf{h}^{2}\mathbf{k}\ell + 4\mathbf{E_{14}}\mathbf{k}^{2}\mathbf{h}\ell + 4\mathbf{E_{15}}\ell^{2}\mathbf{k}\mathbf{h}$

EMT nanocrystalline zeolite

Ng, Chateigner, Valtchev, Mintova: Science 335 (2012) 70

Combined Analysis approach

Minimum experimental requirements

1D or 2D Detector + 4-circle diffractometer (CRISMAT – ANR EcoCorail)

~1000 experiments (2θ diagrams) in as many sample orientations

Instrument calibration (peaks widths and shapes, misalignments, defocusing ...)

XRD-XRF-Raman-FTIR Combined Analysis (SOLSA EU projet)

Independent measurements

Different wavelengths and rays

Reflectivity: thickness, roughness, electron density profiles

X-ray Fluorescence: composition

Spectroscopies: local structures (PDF, FTIR, Mossbauer ...), eventually anisotropic (P-EXAFS, ESR, Raman ...), Element profiles (SIMS, RBS ...) ...

Physical models: magnetisation, conductivity ...

Environments: applied fields

Combined Analysis cost function

$$WSS = \sum_{t=1}^{N_p} u_t \sum_{i=0}^{N_t} w_{it} (y_{itc} - y_{ito})^2$$

For each pattern t: w_{it} : weight, usually $1/y_i = \sigma^2$.

u_t : weight of each pattern t should be used to adjust the importance we want to give to a particular technique or pattern with respect to the others

<u>Grinding-Spinning to powderise</u> another problem !

Grinding: removes angular relationship, adds correlations Spinning: what if the fiber texture axis // spinning axis ?

Texture and strains:

- not measured, not removed ?
- added ?

Same sample ? Rare samples ? Impossible to grind ?

Correction: without measuring it ? (March-Dollase)

XRD Calibration

 $\omega = 20^{\circ}$

KCl, LaB₆ ...

FWHM ($\omega, \chi, 2\theta, \eta \dots$) 2 θ shift gaussianity asymmetry misalignments ...

Minimization algorithms

- Can be fully used in the method (everywhere)
- Marquardt Least Squares (based on steepest decrease and Gauss-Newton)
 - Efficient, best with few parameters, near the solution
- Evolutionary computation (or genetic algorithm)
 - Slow, not efficient, requires a lot of resources
 - Unlimited number of parameters
 - Can start far from the solution
- Simulated annealing (the solution proceed like a random walk, but the walking step decreases as temperature decreases)
 - In between the Marquardt and evolutionary algorithms
- Simplex (generates n+1 starting solutions as vertices of a polygon, n number of parameters, and contract/expand the polygon around the minima)
 - Slow on convergence
 - Remains close to the solution, but explore more minima with respect to the Marquardt

Ca₃Co₄O₉ thermoelectrics

Ca₃Co₄O₉: Misfit lamellar and modulated Structure, with high thermopower

Two monoclinic sub-systems: S1 with a ~ 4.8Å, $b_1 \sim 4.5Å$, $c \sim 10.8Å$ et $\beta \sim 98°$ (NaCl-type) S2 with a ~ 4.8Å, $b_2 \sim 2.8Å$, $c \sim 10.8Å$ et $\beta \sim 98°$ (CdI₂₋type)

RP=19.7%, Rw=11.9%

- neutrons

- 3D Supercell: a=4.8309Å, b~8b1~13b2~36.4902Å, c=10.8353Å, β=98.13° 174 atoms/cell -Sample : 0.6 cm³

SPS (Spark Plasma Sintering)

> Technique de frittage non conventionnel

- ✓ Cinétique de frittage très rapide
- ✓ Température de frittage plus basse
- ✓ Densification plus importante
- X Frittage sous vide (risque de réduction)
- X Matrice en graphite (risque de contamination)

\rightarrow Effet de la pression σ_{SPS}

Le max. de pôles {001} : 3.74 mrd

Le max. de pôles {001} : 3.94 mrd

Le max. de pôles {001} : 4.05 mrd

<u>30 MPa</u>

(900°C;2min)

Lession 50 MPa (900°C;2min)

<u>75 MPa</u>

(900°C;2min)

Effets de bords de cellules SPS \rightarrow Spark Plasma Texturing

□ Texture

- Diffraction neutronique
- \rightarrow Texture dans le volume
- Le max. de pôles {001} : 42.73 mrd

Kenfaui et al., J. Europ. Ceram. Soc. 32, 2012, 2405

Weak texture increase

Cristallites orientation is not the sole cause for resistivity increase : (ρ_c/ρ_{ab}) calculated = 1,1

Artificial Coral Reefs from electrochemistry

Millepora sp.

Natural sea water

Mg(OH)₂ – mediated CaCO₃ precipitation

Millepora sp.

α -Al₂O₃ Slip-casted + magnetically aligned ceramics

Specimens	Ol	DF	Tartura	Refined	SEM Calculated grain size (nm)		Aspect
(Sintering	(001) invers	e pole figure	Index (F2)	crystallite size			Ratio
Temperature)	Min	Max	$\operatorname{IIIdex}\left(\Gamma^{2}\right)$	(nm)	d //	d_{\perp}	$(d_{\perp}/d_{//})$
800°C	0.47	2.4	1.24	137 (13)	~150	~150	1
1300°C	0.21	4.9	2.13	$> 1 \mu m$	1100	1170	1.063
1400°C	0.08	7.9	3.16	$> 1 \mu m$	2610	2970	1.138
1600°C	0.05	19.4	7.78	> 1µm	7300	8800	1.205

Irradiated FluorApatite (FAp) ceramics

Self-recrystallisation under irradiation, depending on SiO₄ / PO_4 ratio (FAp / Nd-Britholite) and on irradiating species

TEM of FAp irradiated with 70 MeV, 10¹² Kr cm⁻² ions

texture corrected, 10¹³ Kr cm⁻²

Virgin, with texture correction

Virgin, no texture correction

Fluence	Vc/V	А	с	<t></t>	Δ_{a/a_0}	Δ_{c/c_0}	R _w	R _B				
(ions.cm ⁻²)	(%)	(Å)	(Å)	(nm)	(%)	(%)	(%)	(%)				
0	100	9.3365(3)	6,8560(5)	294(22)	-	-	14.6	9.1				
Kr												
10 ¹¹	100	-	-	-	-	-						
10 ¹²	100	-	-	-	-	-						
5.10^{12}	49(1)	9.3775(9)	6.8912(8)	294(20)	0.44	0.53	24	15				
10 ¹³	20(1)	9.4236(5)	6.9105(5)	291(20)	0.94	0.82	9.9	6				
5.10^{13}	14(1)	9.3160(4)	6.8402(5)	294(22)	-0.21	-0.22	10.5	5.9				
I												
10^{11}	-	-	-	-	-	-						
5.10 ¹¹	86(2)	9.3603(3)	6.8790(5)	90(10)	0.26	0.35	23.9	15.1				
10 ¹²	-	-	-	-	-	-						
3.10^{12}	47(2)	9.3645(3)	6.8840(5)	91(6)	0.30	0.42	13.3	9				
5.10^{12}	29.2(5)	9.3765(5)	6.8881(6)	77(11)	0.44	0.48	10.4	7.3				
10 ¹³	13.2(2)	9.3719(4)	6.8857(6)	82(9)	0.38	0.45	6.7	4.9				

Single impact model associated to crystal size reduction

Cell parameters and volume increase, then relax

Amorphisation / recrystallisation competition: single or double impact

Amorphous/crystalline volume fraction (damaged fraction Fd = Va / V) as determined by x-ray diffraction

Mullite-silica composites

ODF: $R_w = 4.87 \%$, $R_B = 4.01 \%$ Rietveld: $R_w = 12.90 \%$, GoF = 1.77 Mullite: a = 7.56486(5) Å; b = 7.71048(5) Å; c = 2.89059(1)Å
Uniaxially pressed

Centrifugated

Carbon nanofibre

1 fibre (7 microns diameter): CCD Kappa diffractometer

Planar texture Component Ufer turbostractic model

	A(nm)	C(nm)	Orientation	Max 00l	Crystallite	Crystallite	Global
			FWHM(°)	pole	size along	size along	microstrain
				figure	c (nm)	a (nm)	(rms)
				(m.r.d.)			
C1B1	0.23589(7)	0.6821(1)	21.6(1)	1.95	2.1(4)	2.2(4)	0.0152(10)
C2B1	0.23746(5)	0.68915(8)	18.75(6)	2.05	2.3(2)	2.5(2)	0.0154(11)
C3B1	0.23734(5)	0.69233(9)	18.63(6)	2.04	2.4(3)	2.7(5)	0.0136(6)
C3B2	0.23716(4)	0.69389(9)	19.87(7)	1.98	2.4(4)	2.5(4)	0.0150(4)
C3B3	0.23656(4)	0.68980(8)	19.16(6)	1.99	2.5(6)	2.3(5)	0.0168(8)

Turbostratic phyllosilicate aggregates

Mg_{0.75}Fe_{0.25}O high pressure experiments

E-WIMV + geo

a = 3.98639(3) Å <t> = 46.8(3) Å < ϵ > = 0.00535(1) σ_{33} = -861(3) MPa

LiNbO₃

- Predict macroscopic anisotropic properties: BAW

Propagation equation

$$\rho \frac{\partial^2 u^i}{\partial t^2} = \left[\mathbf{C}^{\mathrm{i}\ell \mathrm{mn}} \right] \frac{\partial^2 u_n}{\partial x^m \partial x^\ell}$$

Cubic crystal system

	$c_{11} \text{ or } c_{11}^{M}$	$c_{12} \text{ or } c_{12}^{M}$	$c_{13} \text{ or } c_{13}^{M}$	$c_{14} \text{ or } c_{14}^{M}$	$c_{33} \text{ or } c_{33}^{M}$	$c_{44} \text{ or } c_{44}^{M}$
Single crystal	201	54.52	71.43	8.4	246.5	60.55
LiNbO ₃ /Si	206.4	68.5	67.6	0.48	216.5	64
LiNbO ₃ /Al ₂ O ₃	204	65.7	69.7	1.1	219.9	63.2

ErMn₃Fe₉C ferrimagnet

Predict macroscopic anisotropic properties: Magnetisation

$$\frac{M_{\perp}}{M_{s}} = 2\pi \int_{0}^{\frac{\pi}{2}} (1 - \rho_{0}) PV(\theta_{g}) \sin\theta_{g} \cos(\theta_{g} - \theta) d\theta_{g} + \rho_{0} M_{random}$$

max {001}: 3.9 mrd min: 0.5 mrd

A lot of problems can be solved!

Texture helps to resolve them: good for real samples

Anisotropy favours higher resolutions

Combined analysis may be a solution, unless you can destroy your sample or are not interested in macroscopic anisotropy ...

If you think you can destroy it, perhaps think twice

Combined Analysis Workshop in Caen: 3rd - 7th July 2017 ! www.ecole.ensicaen.fr/~chateign/formation/

Thanks !

COSTs

COMBIX: Chair of Excellence

FURNACE DAME ECOCORAIL SEMOME

SMAM

EXPERIMENTS

Minimum experimental requirements

1D or 2D Detector + 4-circle diffractometer (X-rays and neutrons) CRISMAT, ILL

~1000 experiments (2θ diagrams) in as many sample orientations

+

Instrument calibration (peaks widths and shapes, misalignments, defocusing ...)

2D Curved Area Position Sensitive Detector

D19 - ILL

~100 experiments (2D Debye-Scherrer diagrams) in as many sample orientations

Structure determination on real (textured) samples Problem 1

Structure and QTA: correlations ?

f(g) and $|F_h|^2$ are different !

f(g):

-Angularly constrained: [h₁k₁l₁]* and [h₂k₂l₂]* make a given angle: more determined if F² high
- lot of data (spectra) needed

 $|F_{h}|^{2}$:

- -Position, f_i, and Debye-Waller constrained
- work on the sum of all diagrams on average

Structure and Residual Stresses (shift peaks with y) Problem 5

Stress and cell parameters: correlations: peak positions and C_{ijkl}

Cell parameters:

- Measured at high angles
- Bragg law evolution

strains:

- Measured precisely at high angles
- stiffness-based variation, also with Ψ

<u>How it works</u>

Le Bail extraction

$$T_{hkl}^{k} = T_{hkl}^{k-1} \frac{\sum_{i} I_{i}^{exp} S_{hkl}^{i}}{\sum_{i} I_{i}^{calc} S_{hkl}^{i}}$$

- Starts with nominal intensities (T_{hkl})
- Computes the full pattern (Icalc)
- Uses the formula to compute next T_{hkl}
- Cycle the last two steps until convergence
- In Maud, options:
 - Only few cycles for texture (3-5) necessary
 - The range for the weighting of the profile can be reduced
 - Background subtracted or not

Texture from Spectra

Le Bail extraction + ODF: WMV, E-WIMV, Generalized spherical harmonics, components, ADC, entropy maximisation ...

Rietveld-Structure

 $y_{c}(\mathbf{y}_{\mathbf{S}},\theta,\eta) = y_{b}(\mathbf{y}_{\mathbf{S}},\theta,\eta) + I_{0} \sum_{i=1}^{N_{L}} \sum_{\Phi=1}^{N_{\Phi}} \frac{v_{i\Phi}}{V_{c\Phi}^{2}} \sum_{h} Lp(\theta) j_{\Phi h} |F_{\Phi h}|^{2} \Omega_{\Phi h}(\mathbf{y}_{\mathbf{S}},\theta,\eta) P_{\Phi h}(\mathbf{y}_{\mathbf{S}},\theta,\eta) A_{i\Phi}(\mathbf{y}_{\mathbf{S}},\theta,\eta)$

Texture

$$P_k(\chi,\phi) = \int_{\varphi} f(g,\varphi) d\varphi$$

• Generalized Spherical Harmonics (Bunge):

$$P_{k}(\chi,\phi) = \sum_{l=0}^{\infty} \frac{1}{2l+1} \sum_{n=-l}^{l} k_{l}^{n}(\chi,\phi) \sum_{m=-l}^{l} C_{l}^{mn} k_{n}^{*m}(\Theta_{k}\phi_{k}) \qquad f(g) = \sum_{l=0}^{\infty} \sum_{m,n=-l}^{l} C_{l}^{mn} T_{l}^{mn}(g)$$

• Components (Helming):

$$f(g) = F + \sum_{c} I^{c} f^{c}(g)$$

• WIMV (William, Imhof, Matthies, Vinel) iterative process:

$$f^{n+1}(g) = N_n \frac{f^n(g)f^0(g)}{\left(\prod_{\mathbf{h}=1}^{I} \prod_{m=1}^{M_h} P_{\mathbf{h}}^n(\mathbf{y})\right)^{\frac{1}{IM_h}}}$$

$$f^{0}(g) = N_{0} \left(\prod_{h=1}^{I} \prod_{m=1}^{M_{h}} P_{h}^{exp}(\mathbf{y}) \right)^{\frac{1}{IM_{h}}}$$

E-WIMV (Rietveld only):

with 0 < r_n < 1, relaxation parameter, M_h number of division points of the integral around k, w_h reflection weight

• Entropy maximisation (Schaeben):

$$f^{n+1}(g) = f^{n}(g) \prod_{m=1}^{M_{h}} \left(\frac{P_{h}(\mathbf{y})}{P_{h}^{n}(\mathbf{y})}\right)^{r_{n}} \frac{W_{h}}{M_{h}}$$

$$f^{n+1}(g) = f^{n}(g) \prod_{m=1}^{M_{h}} \left(\frac{P_{h}(\mathbf{y})}{P_{h}^{n}(\mathbf{y})} \right)^{\frac{T_{n}}{M_{h}}}$$

 arbitrarily defined cells (ADC, Pawlik): Very similar to E-WIMV, with integrals along path tubes

Shapes, microstrains, defaults, distributions Problem 6

Shapes and stress-texture-structure: correlations ?

Shapes ...:

- line broadening problem
- average positions modified
- if anisotropic: modification changes with \boldsymbol{y}

Stress-texture-structure:

- need "true" peak positions and intensities
- need deconvoluted signals

Line Broadening causes

- Instrumental broadening
- Finite size of the crystals acts like a Fourier truncation: size broadening
- Imperfection of the periodicity due to d_h variations inside crystals: microstrain effect
- Generally: 0D, 1D, 2D, 3D defects
- All quantities are average values over the probed volume electrons, x-rays, neutrons: complementary distributions: mean values depend on distributions' shapes

Irradiated Fluorapatites

Instrumental broadening

$$g(x) = g_{\lambda}(x) \otimes g_{g}(x)$$

Energy dispersion

Geometrical aberrations

Back on diffraction expression

$$\begin{aligned} A_{\vec{h}} &= F_{\vec{h}} T_{\vec{a}\vec{b}\vec{c}}(\vec{h}) \\ T_{\vec{a}\vec{b}\vec{c}}(\vec{h}) &= \frac{\sin[\pi(n+1)\vec{a}.\vec{h}]}{\sin[\pi\vec{a}.\vec{h}]} \frac{\sin[\pi(p+1)\vec{b}.\vec{h}]}{\sin[\pi\vec{b}.\vec{h}]} \frac{\sin[\pi(q+1)\vec{c}.\vec{h}]}{\sin[\pi\vec{c}.\vec{h}]} \end{aligned}$$

- $A_{\vec{h}}$: scattered amplitude
- $F_{\vec{h}}$: structure factor
- $T_{\vec{a}\vec{b}\vec{c}}(\vec{h})$: interference function

n, p, q : number of periods in the \vec{a} , \vec{b} , \vec{c} directions

$$H(\alpha) = \frac{\sin^2[\pi(n+1)\alpha]}{\sin^2[\pi\alpha]}$$

infinite crystal:
$$\begin{vmatrix} \vec{a} \cdot \vec{h} = h \\ \vec{b} \cdot \vec{h} = k \\ \vec{c} \cdot \vec{h} = 1 \end{vmatrix}$$

Crystallite's size-shape effect

After Scherrer analysis ... Williamson-Hall (1949) Warren-Averback-Bertaut (1952) Whole-Pattern analysis: Langford (1978), de Keijser (1982), Balzar et Ledbetter (1982) ...

> But deconvolution of contributions (Stokes 1948) ! Rietveld (1969): convolution !

More infos: http://www.ecole.ensicaen.fr/~chateign/ formation/course/Classical_Microstructure.pdf Scherrer, Integral breadth, Williamson-Hall ...

$$\langle D \rangle_{\nu} = \frac{K\lambda}{\beta_{\rm S}(2\theta) \cos\theta}$$

More elegant, mandatory for whole-pattern: Stokes deconvolution Bertaut-Warren-Averbach treatment, e.g. for a 001 peak:

$$A_n = A_n^S A_n^D = \frac{N_n}{N_3} \langle \cos 2\pi l Z_n \rangle$$
$$A_n^S = \frac{N_n}{N_3} = \frac{1}{N_3} \sum_{i=|n|}^{\inf} (i - |n|) p(i)$$
$$\left(\frac{dA_n^S}{dn}\right)_{n \to 0} = -\frac{1}{N_3}$$

Second derivative: distribution of column lengths

Phase and Texture

Problem 4

Phase and QTA: correlations: f(g), S_{Φ}

f(g):

- angular relationships
- plays on individual spectra
- essential to operate on textured sample

 S_{Φ} :

- plays on overall scale factor (sum diagram)

Phase analysis

• Volume fraction

$$V_{\Phi} = \frac{S_{\Phi}V_{uc\Phi}^2}{\displaystyle\sum_{\Phi} \left(S_{\Phi}V_{uc\Phi}^2\right)_{\Phi}}$$

• Weight fraction

$$m_{\Phi} = \frac{S_{\Phi} Z_{\Phi} M_{\Phi} V_{uc\Phi}^2}{\sum_{\Phi} \left(S_{\Phi} Z_{\Phi} M_{\Phi} V_{uc\Phi}^2 \right)_{\Phi}}$$

Z = number of formula units M = mass of the formula unit V = cell volume
RESIDUAL STRESSES

Residual Stresses shift peaks with y Problem 2

Stress and QTA: correlations ? f(g) and <C_{ijkl}>

f(g):

- Moves the $sin^2\Psi$ law away from linear relationship
- Needs the integrated peak (full spectra)

strains:

- Measured with pole figures
- needs the mean peak position

Isotropic samples: triaxial, biaxial, uniaxial stress states Textured samples: Reuss, Voigt, Hill, Bulk geometric mean approaches

Residual Stresses and Rietveld

Isotropic samples: triaxial, biaxial, uniaxial stress states Textured samples: Reuss, Voigt, Hill, Bulk geometric mean approaches

Strain-Stress

$$\epsilon(\mathbf{X}) = \epsilon^{\mathrm{I}} + \epsilon^{\mathrm{II}}(\mathbf{X}) + \epsilon^{\mathrm{III}}(\mathbf{X})$$

$$\begin{split} \left\langle S \right\rangle_{geo}^{-1} &= \exp\left[-\sum_{m=1}^{N} \nu_m \ln S_m\right] = \exp\left[\sum_{m=1}^{N} \nu_m \ln S_m^{-1}\right] = \left\langle S^{-1} \right\rangle_{geo} = \left\langle C \right\rangle_{geo} \\ \text{or} \\ \left\langle S \right\rangle_{geo}^{-1} &= \left[\prod_{m=1}^{N} S_m^{\nu_m}\right]^{-1} = \prod_{m=1}^{N} S_m^{-\nu_m} = \prod_{m=1}^{N} \left(S_m^{-1}\right)^{\nu_m} = \left\langle S^{-1} \right\rangle_{geo} = \left\langle C \right\rangle_{geo} \end{split}$$

Strain-Stress by diffraction

We measure strains !

For each h and y directions

 $\mathcal{E}^{I}(\mathbf{h},\mathbf{y})$ and $\mathcal{E}^{II}(\mathbf{h},\mathbf{y})$: $\epsilon^{III}(\mathbf{h},\mathbf{y})$:

peak broadenings

peak shifts

For non-textured (isotropic) samples

Triaxial state
$$\varepsilon^{I}(h, y) = \frac{1+v}{E} \Big[\Big(\sigma_{\phi} - \sigma_{33} \Big) \sin^{2} \psi + \Big(\sigma_{13} \cos \phi + \sigma_{23} \sin \phi \Big) \sin 2\psi \Big] - \frac{v}{E} \sigma_{ii}$$
$$= \frac{\langle d_{h}(\varphi, \psi) \rangle_{V_{d}} - d_{h,0}}{d_{h,0}}$$
$$\sigma_{ii} = \sigma_{11} + \sigma_{22} + \sigma_{33}$$
$$\sigma_{\phi} = \sigma_{11} \cos^{2} \varphi + \sigma_{12} \sin 2\varphi + \sigma_{22} \sin^{2} \varphi - \sigma_{33}$$

Assuming σ_{33} =0 and small penetration depth

$$\varepsilon^{I}(h, y) = \frac{1+\nu}{E}\sigma_{\phi}\sin^{2}\psi - \frac{\nu}{E}(\sigma_{11} + \sigma_{22})$$

linear $\sin^2\psi$ law

But non-linear behaviour is observed: <u>Textured</u> (anisotropic) samples; anisotropic plasticity; thermal anisotropy ...

Dolle (J. Appl. Cryst., 12, 489, 1979) analyzed the problem in general, then Noyan and Nguyen (plastic deformation), Barral et al. (texture connection) ...

For textured (anisotropic) samples

Arithmetic means:

- Voigt model: ε_{ij} is homogeneous, σ^{kl} not, upper bound for $\langle C_{ijkl} \rangle$
- Reuss model: σ^{ij} is homogeneous, ϵ_{kl} not, lower bound for $\langle C_{ijkl} \rangle$
- Hill model: neither ϵ_{ij} nor σ^{kl} are homogeneous, $\langle C_{ijkl} \rangle$ "in between"

Inversion property is violated: $\langle C_{ijkl} \rangle \neq \langle S_{ijkl} \rangle^{-1}$

Geometric means: Inversion property is math property: $\langle C_{ijkl} \rangle \neq \langle S_{ijkl} \rangle^{-1}$

Scalar case (isotropic):

$$\left(\overline{E}^{geo}\right)^{-1} = e^{-\sum_{i=1}^{N} v_i \ln E_i} = e^{\sum_{i=1}^{N} v_i \ln E_i^{-1}} = \overline{\left(E^{-1}\right)}^{geo}$$

Geometric mean of elastic tensors

Elastic tensors are diagonally symmetric, but not diagonal !: need to diagonalise them first: $C^{(\lambda)}$ with $b_{ii}^{(\lambda)}$ eigentensors

$$C_{ijk\ell} = \sum_{\lambda=1}^{6} C^{(\lambda)} \mathbf{b}_{ij}^{(\lambda)} \mathbf{b}_{k\ell}^{(\lambda)}$$

$$(\ln C)_{ijk\ell} = \sum_{\lambda=1}^{6} \ln(\mathbf{C}^{(\lambda)}) \mathbf{b}_{ij}^{(\lambda)} \mathbf{b}_{k\ell}^{(\lambda)}$$
$$= \ln \left[\prod_{\lambda=1}^{6} (\mathbf{C}^{(\lambda)})^{\mathbf{b}_{ij}^{(\lambda)} \mathbf{b}_{k\ell}^{(\lambda)}} \right]$$

 $\sigma^{ij,M} = C_{ijk\ell}^{M} \varepsilon_{k\ell}^{M} \text{ with } C_{ijk\ell}^{M} = (C_{ijk\ell}^{-1,M})^{-1}$

Which are weighted over orientations:

$$C_{ijkl}^{Macro} = \overline{C_{ijkl}}^{geo} = e^{\overline{\ln C}_{i'j'k'l'}} = e^{\langle \Theta \rangle_{ijk\ell,i'j'k'\ell} (\ln C)_{i'j'k'l'}}$$
$$\left\langle \Theta \right\rangle_{ijk\ell,i'j'k'\ell'} = \int_{g} \Theta_{i}^{i'}(g) \Theta_{j}^{j'}(g) \Theta_{k}^{k'}(g) \Theta_{\ell}^{\ell'}(g) f(g) dg$$

Satisfying Hooke's law

Multiphase sample

For simplicity, take the isotropic case (N phases φ_n with phase fractions ν_n):

Matthies et Humbert (J. Appl. Cryst. 1995) for single phase, Matthies (Sol. Stat. Phen. 2010)

<u>Layered systems</u> <u>Problem 3</u>

Layer, Rietveld and QTA: correlations: f(g), thicknesses and structure

f(g):

- Pole figures need corrections for abs-vol
- Rietveld also to correct intensities

layers:

- unknown sample true absorption coefficient μ
- unknown effective thickness (porosity)

Layering

Asymmetric Bragg-Brentano

$$C_{\chi}^{\text{top film}} = g_1 \left(1 - \exp\left(-\mu T g_2 / \cos\chi\right) \right) / \left(1 - \exp\left(-2\mu T / \sin\omega\cos\chi\right) \right)$$
$$C_{\chi}^{\text{cov.layer}} = C_{\chi}^{\text{top film}} \left(\exp\left(-g_2 \sum \mu_i' T_i' / \cos\chi\right) \right) / \left(\exp\left(-2\sum \mu_i' T_i' / \sin\omega\cos\chi\right) \right)$$

$AI_2O_3 \ll standard \gg powder$

 $\frac{2\theta \text{-scans:}}{\text{GoF} = 1.92}$ $R_W = 15.60 \%$ $R_B = 11.94 \%$

 $\frac{\theta - 2\theta \text{-scans:}}{\text{GoF} = 1.86}$ $R_W = 16.11 \%$ $R_B = 12.40 \%$

15 diagrams x 5 mn (fibre texture): 1.25 h 936 diagrams x 5 mn (non symmetric texture): 3.25 days

-70 microns x shift in χ And texture !!

Specular reflectivity: **q**=(0,0,z)

• Fresnel:

$$R(\mathbf{q}) = \left| \frac{q_{z} - \sqrt{q_{z}^{2} - q_{c}^{2} + \frac{32i\pi^{2}\beta}{\lambda^{2}}}}{q_{z} + \sqrt{q_{z}^{2} - q_{c}^{2} + \frac{32i\pi^{2}\beta}{\lambda^{2}}}} \right|^{2} \delta q_{x} \delta q$$

• matrix:

$$R^{flat} = \frac{r_{0,1}^2 + r_{1,2}^2 + 2r_{0,1}r_{1,2}\cos 2k_{Z,1}h_{1,2}}{1 + r_{0,1}^2r_{1,2}^2 + 2r_{0,1}r_{1,2}\cos 2k_{Z,1}h_{1,2}}$$

 Born approximation: Electron Density Profile

$$R(q_z) = r \cdot r^* = R_F(q_z) \left| \frac{1}{\rho_s} \int_{-\infty}^{+\infty} \frac{d\rho(z)}{dz} e^{iq_z z} dz \right|^2$$

• Roughness:

$$R^{rough}(q_z) = R(q_z) \exp(-q_{z,0}q_{z,1}\sigma^2) \quad \text{Low-angles (reflectivity)}$$
$$S_R = 1 - p \exp(-q) + p \exp\left(\frac{-q}{\sin\theta}\right) \quad \text{high-angle (Suortti)}$$

Useful for having bot specular and off-specular signals in one scan

Experimental Set-ups

Laboratory combined XRF & XRR set-up

XRF detector = silicon drift detector (25 mm²/500 µm, 0.5mm Be window)

195 eV FWHM

25

30

175 eV FWHM 13 mm² SiPIN @ 7 kcps

20

Energy (keV)

25 mm² SuperSDD @ 200 kcps

25 mm² SiPIN @ 7 kcps 25 mm² SuperSDD @ 400 kcps

Experimental Set-ups

By changing (χ,φ): peaks position moves → residual stress

Combined XRR, XRD & GiXRF Analysis

XRR

GiXRF

Full-Pattern Search-Match

www.iutcaen.unicaen.fr

Rutile nanocrystalline Electron Powder Diffraction pattern

A site for open FPSM

Diffraction pattern and sample composition

Upload diffraction pattern: Parcourir_						
Atomic elements in the sample: O AI Ca F Zn						
Sample nanocrystalline						
Experiment details						
Radiation: ◎ X-ray tube: Cu ▼ ○ Other : x-ray ▼ Wavelength (Å): 1.540598						
Instrument geometry: Bragg-Brentano (theta-2theta) Bragg-Brentano (2theta only), omega: 10 Debye-Scherrer Transmission 						
Instrument broadening function: Medium						
Extra output (for debugging)						
Structures database: CODStructures V						

1 min later >275000 COD structures

Phase ID	name	vol. (%)	wt. (%)	crystallites (Å)	microstrain
9004178	Zincite	16.8284	23.9708	2148.26	0.00028435
9009005	Fluorite	42.5522	33.9388	2117.08	0.000363147
9007498	Corundum	37.2197	37.2493	1889.82	0.000267779
2300112	zinc_oxide	3.39971	4.84114	1754.74	6.98311e-05

Final Rietveld analysis, Rw: 0.159468, GofF: 1.95869

Found phases and quantification:

Aplanarity of carbonate groups in CaCO₃: $\Delta Z_{C-O1} = c(z_C-z_{O1})$

for all (χ , ϕ) sample orientations

IRC layer of *Charonia lampas lampas* for selected (χ , ϕ) sample orientations

Aragonitic layers in mollusc shells

Unit-cell distortions

		Charonia		Pinctada	Haliotis	
	OCL	IRCL	ICCL	ISN	ICN	
a (Å)	4,98563(7)	4,97538(4)	4,9813(1)	4,97071(4)	4.9480(2)	
b (Å)	8,0103(1)	7,98848(8)	7,9679(1)	7,96629(6)	7.9427(6)	
C (Å)	5,74626(3)	5,74961(2)	5,76261(5)	5,74804(2)	5.7443(6)	
∆a/a	0,0047	0,0026	0,0038	0.0017	-0.0029	
$\Delta b/b$	0,0053	0,0026	0,0000	-0.0002	-0.0032	
∆c/c	0,0004	0,0010	0,0033	0.0007	0.0007	
$\Delta V/V$	1,05	0,62	0,71	0.22	-0.60	
(%)						

Anisotropic cell distortion - depends on the layer Only nacres exhibit (**a**,**b**) contraction Due to inter- and intra-crystalline molecules Distortions and anisotropies larger than pure intra- effect (Pokroy et al. 2007)

Elastic stiffnesses

Single crystal	160	37.3 87.2	1.7 15.7 84.8	41.2	25.6	42.7
ICCL	96.5	31.6 139	13.7 9.5 87.8	29.8	36.6	40.2
RCL	130.1	32.6 103.3	10.3 14.1 84.5	36.3	31.1	40.5
OCL	111.1	32.9 119	13.2 11.8 84.8	32.8	34.6	40.9

Structural distortions in aragonitic biogenic ceramic composites

Atomic Structures

		Geological reference	Charonia lampas OCL	Charonia lampas IRCL	Charonia lampas ICCL	<i>Strombus</i> <i>decorus</i> mixture	Pinctada maxima ISN
Ca	y	0.41500	0.41418(5)	0.414071(4)	0.41276(9)	0.4135(7)	0.41479 (3)
	z	0.75970	0.75939(3)	0.76057(2)	0.75818(8)	0.7601(8)	0.75939 (2)
С	y	0.76220	0.7628(2)	0.76341(2)	0.7356(4)	0.7607(4)	0.7676 (1)
	z	-0.08620	-0.0920(1)	-0.08702(9)	-0.0833(2)	-0.0851(7)	-0.0831 (1)
01	y	0.92250	0.9115(2)	0.9238(1)	0.8957(3)	0.9228(4)	0.9134 (1)
	z	-0.09620	-0.09205(8)	-0.09456(6)	-0.1018(2)	-0.0905(9)	-0.09255 (7)
02	x	0.47360	0.4768(1)	0.4754(1)	0.4864(3)	0.4763(6)	0.4678 (1)
	y	0.68100	0.6826(1)	0.68332(9)	0.6834(2)	0.6833(3)	0.68176 (7)
	z	-0.08620	-0.08368(6)	-0.08473(5)	-0.0926(1)	-0.0863(7)	-0.09060 (4)
ΔZ_{C-01} (Å)		0.05744	0.00029	0.04335	0.1066	0.031	0,054

Carbonate group aplanarity specific to a given layer Aplanarity decreases from inner to outer shell layers (CL layers) -> up to quite $\Delta Z=0$ outside (nearly the calcite value) Average aplanarity on the whole shell = geological reference (Strombus) In Haliotis nacre: large $\Delta Z=0.08$, + strong anisotropy: less stable nacre

Hyriopsis cumingi (freshwater mussel), China

sheet nacre (aragonite)

vaterite defect

864 diagrams2-days acquisition250 mm goniometer

 χ^2 = 1.01 Rw = 53.9 %

a = 4.9542(2) Å b = 7.9593(3) Å c = 5.7258(2) Å

Bruker CCD + «small» InCoatec µsource

Reflection geometry 72 images 2-hours acquisition 60 mm sample-CCD distance Compromises:

- resolution/pole figure coverage
- pixel size/distance
- wavelength/nb of lines

Standard component

EWIMV

Refinement of:

- image centre (x,y) and tilts (xt v)
- sample-CCD distance

 $\chi^2 = 3.7$ Rw = 18.5 %

Imperfect control of pearl symmetry:

- volume/absorption corrections
- center of rotation
- Biso compensation

90

12.0

16.0

Intensity-spectra extraction

EDP: Microstructure of nanocrystalline materials: TiO2 rutile

quantitative analysis of electron diffraction ring pattern ?

FEI Tecnai G2 (300kV) with an Ultrascan 1000 (2048x2048 14µm pixels)

Paterns taken from +25° to -25° (step 5°) tilts: thin film prepared for TEM plan view

3 out of 11 EPD, 1D and 2D plots. Pattern matching (Pawley)

Pawley pattern matchingEWIMVFiber component

EWIMV Fiber component 2-beams dynamical (Blackman)

Line broadening: anisotropic sizes

Mn₃O₄ nanopowders (polyol process)

TEM in seconds (few µg)

 $<\!\!R_{\mathbf{h}}\!\!> = R_0 + R_1 P_2^{\ 0}(x) + R_2 P_2^{\ 1}(x) \cos\varphi + R_3 P_2^{\ 1}(x) \sin\varphi + R_4 P_2^{\ 2}(x) \cos2\varphi + R_5 P_2^{\ 2}(x) \sin2\varphi + \dots$

QTA: local vs global

Pt thin film on Si

a) 6 µm diameter selected area, b) EPD and c) 2D plot.

d) 0.5 µm diameter selected area, e) EPD and f) 2D plot

Bi-2212

Stacking faults and/or intergrowth on the c-axis \rightarrow New periodicities and peaks characterized with intermediate c parameters.

However, no algorithm is included to solve intergrowths in the combined approach.

Logarithmic density scale, equal area projection

Bi2223 compounds

(00 ℓ) Texture

Combined Analysis

-Neutrons -Sample: ~70 mm³ -2 θ patterns for χ =0° to 90° -No ϕ rotation (fibre texture).

Rw=9.12 RP=16.24

Effect of the sinter-forging treatment on the texture development, crystal growth, transport properties

Sinter- forging dwell time (h)	Orientation Distribution Max (m.r.d.)		% Bi2223	Cell parameters (Å)		Crystallite size Bi2223	Rb	Rw (%)	Rexp	RP0	RP1	
	Bi2212	Bi2223		Bi2223	Bi2212	(nm)	(70)	(70)	(70)	(/0)	(/0)	(20011-)
20	21.8	20.7	59.9±1.3	a=5.419(3) b=5.391(3) c=37.168(3)	a=5.414(3) b=5.393(3) c=30.800(3)	205±7	7.56	11.1	4.55	17.74	10.56	12500
50	24.1	24.4	72.9±2.9	a=5.419(3) b=5.408(3) c=37.192(3)	a=5.416(3) b=5.396(3) c=30.806(3)	273±10	7.54	11.37	4.58	17.05	11.04	15000
100	31.5	25.2	84.4±4.6	a=5.410(3) b=5.405(3) c=37.144(3)	a=5.412(3) b=5.403(3) c=30.752(3)	303±10	5.4	8.04	3.69	13.54	9.31	19000
150	65.4	27.2	87.0±4.1	a=5.417(3) b=5.403(3) c=37.199(3)	a=5.413(3) b=5.407(3) c=30.792(3)	383±13	6.13	9.12	4.8	16.24	12.25	20000

$AIN/Pt/TiO_x/AI_2O_3/Ni-Co-Cr-AI$

Rw (%) = 24.120445

Rexp (%) = 5.8517213

T(AIN) = 14270(3) nm T(Pt) = 430(3) nm

 (χ, φ) randomly selected diagrams

AI_2O_3

a = 4.7562(6) Å c = 12.875(3) Å T= 7790(31) nm <t> = 150(2) Å <ε> = 0.008(3)

a = 3.569377(5) Å <t> = 7600(1900) Å < ϵ > = 0.00236(3) σ_{11} = -328(8) MPa σ_{22} = -411(9) MPa

101

102

100

002

a = 3.11203(1) Å c = 4.98252(1) Å T = 14270(3) nm <t> = 2404(8) Å < ϵ > = 0.001853(2) σ_{11} = -1019(2) MPa σ_{22} = -845(2) MPa

Rw (%) = 33.3

a = 3.91198(1) Å T = 1204(3) nm <t> = 2173(10) Å < ϵ > = 0.002410(3) σ_{11} = -196.5(8) σ_{22} = -99.6(6)

Rw (%) = 4.1

Substrate bias vs stress-texture evolution

Si nanocrystalline thin films M. Morales, Caen

Silicon thin films deposition by reactive magnetron sputtering: bower density 2W/cm² 4 total pressure: $p_{total} = 10^{-1}$ Torr \clubsuit plasma mixture: H₂ / Ar, pH₂ / p_{total} = 80 % 🗞 temperature: 200°C \Rightarrow substrates: amorphous SiO₂ (a-SiO₂) (100)-Si single-crystals target-substrate distance (d) • $a-SiO_2$ substrates: d = 4, 6, 7, 8, 10, 12 cm films A, B, C, D, E, F • (100)-Si: d = 6, 12 cmfilms G, H

Aim: quantum confinement, photoluminescence properties

Typical refinement

broad, anisotropic diffracted lines, textured samples

Refinement Results

			RX Anisotropic sizes (Å)			Texture parameters			Reliability factors (%)				
Sample	d (cm)	a (Å)	thickness				Maximum	minimum	Texture index	RP ₀	R _w	R _B	R _{exp}
			(nm)	<111>	<220>	<311>	(m.r.d.)	(m.r.d.)	F ² (m.r.d ²)				
Α	4	5.4466 (3)		94	20	27	1.95	0.4	1.12	1.72	4.0	3.7	3.5
В	6	5.4439 (2)	711 (50)	101	20	22	1.39	0.79	1.01	0.71	4.9	4.3	4.2
С	7	5.4346 (4)	519 (60)	99	40	52	1.72	0.66	1.05	0.78	4.3	4.0	3.9
D	8	5.4461 (2)	1447 (66)	100	22	33	1.57	0.63	1.04	0.90	5.5	4.6	4.5
E	10	5.4462 (2)	1360 (80)	98	20	25	1.22	0.82	1.01	0.56	5.0	3.9	4.0
F	12	5.4452 (3)	1110 (57)	85	22	26	1.59	0.45	1.05	1.08	4.2	3.5	3.7
G	6	5.4387 (3)	1307 (50)	89	22	28	1.84	0.71	1.01	1.57	5.2	4.7	4.2
Н	12	5.4434 (2)	1214 (18)	88	22	24	2.77	0.50	1.12	2.97	5.0	4.5	4.3

Mean anisotropic shape

Schematic of the mean crystallite shape for Sample D represented in a cubic cell, as refined using the Popa approach and exhibiting a strong elongation along <111>, and TEM image

XRR: Roughness governed

AFM: homogeneous roughness

Refractive index linked to film porosities: Larger target-sample distances: increased compacity due to lower nanopowder filling

Ferroelectric PCT films

J. Ricote, Madrid

thin films:

 $(Ca_{0.24}Pb_{0.76})TiO_3$ sol-gel synthesised solutions deposited by spin coating on a substrate of Pt/TiO₂/Si, with and without a treatment at 650°C for 30 min.

All films are crystallised at 700°C for 50 s by Rapid Thermal Processing (RTP; 30°C/s). A series is also recrystallised at 650°C for 1 to 3 h.

a = 3.9108(1) Å T = 457(3) Å t_{iso} = 458(3) Å $\epsilon' = 0.0032(1)$ rms a = 3.9156(1) Å c = 4.0497(3) Å T = 2525(13) Å t_{iso} = 390(7) Å $\epsilon = 0.0067(1)$ rms

 $R_W = 13\%; R_B = 12\%; R_{exp} = 22\%.(Rietveld)$ $R_W = 5\%; R_B = 6\% (E-WIMV)$

Atom	Occupancy	Х	У	Z
Pb	0.76	0.0	0.0	0.0
Ca	0.24	0.0	0.0	0.0
Ti	1.0	0.5	0.5	0.477(2)
O1	1.0	0.5	0.5	0.060(2)
02	1.0	0.0	0.5	0.631(1)

Compliance	PbTiO ₃	Film	PCT-Si	PLT	PCT-Mg
coefficients	single crystal	random	<001>	<001>	<001>
$[10^{-3} \text{ GPa}^{-1}]$	(data set A)	orientation	contrib≈17%	contrib.≈49%	contrib.≈68%
S ₁₁	6.5	10.1	10.5	10.0	9.7
s ₂₂	6.5	10.0	10.5	10.0	9.7
S ₃₃	33.3	9.8	9.0	10.3	11.3
S ₄₄	14.5	13.2	12.8	12.9	13.1
S 55	14.5	13.2	12.8	13.0	13.1
S ₆₆	9.6	13.4	14.0	13.5	12.7
s ₁₂	-0.35	-3.3	-3.5	-3.2	-3.0
S ₂₁	-0.35	-3.3	-3.5	-3.2	-3.0
S ₁₃	-7.1	-3.2	-3.1	-3.4	-3.6
S ₃₁	-7.1	-3.2	-3.1	-3.4	-3.6
S ₂₃	-7.1	-3.2	-3.1	-3.4	-3.6
S ₃₂	-7.1	-3.2	-3.1	-3.4	-3.6
s ₃₃ /s ₁₁	5.1	0.97	0.86	1.03	1.16
s_{13}/s_{12}	20.3	0.97	0.89	1.06	1.20

Geometric mean average + biaxial stress state

Cyclic-fibre texture assumed

 $R_W (\%) = 7.14$ $R_B (\%) = 5.64$

a = 4.75874(3) Å c = 12.99373(7) Å

 $z_{AI} = 0.35225(2) \text{ Å}$ $x_{O} = 0.6943(2) \text{ Å}$

Limitations of the simple Quantitative Texture Analysis

Structural parameters are difficult to obtain due to:

Structural parameters

Pt layer		a (Å)	thickness (nm)	R factors (%)
non-treated su Pt	ubstrate	3.9108(1)	45.7(3)	R _w =13, R _B =12, R _{exp} =22
annealed sub	strate	3 9100(4)	A6 A(3)	P = 8 P = 14 P = -21
Pt (Recryst.	1h)	3.9114(2)	47.8(3)	$R_W = 0, R_B = 14, R_{exp} = 21$ $R_W = 9, R_B = 20, R_{exp} = 21$
Pt (Recryst.	2h)	3.9068(1)	46.9(3)	R_{W} =9, R_{B} =14, R_{exp} =22
Pt (Recryst.	3h)	3.9141(4)	47.5(9)	R_{W} =27, R_{B} =12, R_{exp} =21

Annealing of the substrate does not introduce significant variations on the structure of the Pt layer

PTC film	a (Å)	c (Å) th	ickness (nm)
on non-treated substrate PCT on annealed substrate	3.9156(1)	4.0497(6)	272.5(13)
PCT	3.8920(6)	4.0187(8)	279.0(9)
PCT (Recryst. 1h)	3.8929(2)	4.0230(4)	266.1(11)
PCT (Recryst. 2h)	3.8982(2)	4.0227(4)	258.4(9)
PCT (Recryst. 3h)	3.9001(4)	4.0228(11)	253.6(29)

Recrystallisation reduces the stress on the film, and, increases the lattice parameters

Structural, microstructural and texture quantitative characterisation of ferroelectric thin films by the combined method

 R_{W} = 13%; R_{B} = 12%; R_{exp} = 22%.(Rietveld) R_{W} = 5%; R_{B} = 6% (E-WIMV)

Substrate influence on Residual Stress and Texture

Ferroelectric PMN-PT films J. Ricote, DMF-Madrid

<u>Pt</u>

a = 3.91172(1) Å T = 583(5) Å t_{iso} = 960(1) Å ε = 0.0032(1) rms σ_{11} = 0.639(1) GPa σ_{22} = 0.651(1) GPa σ_{12} = -0.009(1) GPa

Pb_{0.7} (Mg_{1/3}Nb_{2/3})O₃-Pb_{0.3}TiO₃ /TiO₂/Pt/Si-(100)

ZnSe:Cr²⁺ films N. Vivet, PhD

• Large emission band centred at 2200nm: ${}^{5}E \rightarrow {}^{5}T_{2}$ transition (Cr²⁺)

Single crystals and thin films: similar spectra

Residual stresses and/or stacking faults

Fibre Texture + 2 polytypes (6H and 3C) + anisotropic sizes + residual stresses and/or stacking faults + layering

Sum diagram: ω =13.65°, P_{RF} = 200W

Gold thin films

Crystallite	Film thickness							
size (Å) along	10nm	15nm	20nm	25nm	35nm	40nm		
[111]	176	153	725	254	343	379		
[200]	64	103	457	173	321	386		
[202]	148	140	658	234	337	381		

a = 5.146(2) Å <t> = 106(2) Å < ϵ > = 0.00333(5) $\sigma_{11} = \sigma_{22}$ -2.62(8) GPa

Zr_{0.8}Ca_{0.2}O₂ film orthorhombic texture