
 

X-ray and neutron full profile analysis 
for texture, structure and  

phase determination of  
natural samples and more :  

“Combined analysis approach” 
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Ä  Combined analysis approach presentation 
● Experimental needs 
● Problems on ultrastructures: typical ferroelectric film example 
● Methodology-Algorithm  
● Ultrastructure implementation  
● Results on a case study on typical ferroelectric film 
● Residual stresses, Rietveld and texture 
● MAUD program implemented codes  
● Example showing correlations between stress and texture 
● Example showing correlations between anisotropic sizes and texture. 

Ä Combined analysis approach illustration through various textured 
examples: multiphase bulks and thin films  

 
● Geological samples 
● CaCO3 mollusc shells 
● Biomimetic CaCO3 thin films for medical applications 
● Shell fossils: Texture and phylogeny 
● Multiphased Cr2+:ZnSe films: combined analysis approach actual 

limitations 



structure factor  
(includes Debye-Waller term) 

scale factor  
(phase abundance) 

multiplicity 

Lorentz- polarisation 
factor ( ) 2

c

p

hkl

2

hklhkl V
L

 m F  S  A 2I =θÄ 

Random powder : 

Sample aberrations = crystallite sizes 
(isotropic or anisotropic)  

+ 
 rms microstrains ε* = < ε >2 due to 

linear and point defects, stacking faults… 

instrumental broadening è 
powder standard calibration  

Ä Shkl(2θ) = SI
hkl (2θ) * SS

hkl(2θ) 

IRX calc. (2θ) =∑ Ihkl,phases (2θ) Shkl(2θ) + bkg (2θ)  
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absorption 
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Combined analysis approach  
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function 



Texture : 

Orientation Distribution Function (ODF) : WIMV or E-WIMV methods 

Correction of intensities for texture : 
Ihkl(2θ, χ ,ϕ) = Ihkl(2θ) Phkl(χ ,ϕ)  

From spectra : pole figures Phkl(χ ,ϕ)  

Combined analysis approach  
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CPS detector 

Combined analysis approach  

Minimum experimental requirements: 

1D or 2D Detector + 4-circle diffractometer (X-rays and neutrons) 
CRISMAT, ILL 

~1000 experiments (2θ 
diagrams) in as many sample 

orientations 

λ Cu α= 1.5418 Å 

λ neutron= 2.533 Å 



Instrument calibration : 

instrumental resolution function  
ê  

mapping spectrometer space with : 
• KCl or LaB6 powder standards for X-rays  

 • Belemnite rostrum having large calcite grains for neutrons  

ω = 40° 
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2θ (°) 

peaks widths and shapes FWHM (ω, χ, 2θ …), misalignments, 
defocusing (2θ shift, Gaussianity, asymmetry) … 

Combined analysis approach  
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Problems on ultrastructures :  
example of Pb0.76Ca0.24TiO3 (PTC) ferroelectric films 

PTC film  

Electrode (Pt) 
Antidiffusion barrier  

(TiO2) 
SiO2 

Substrate (Si) 

Sum X-ray diagram (χ, ϕ) 

Pt and PTC strong peak 
overlaps + 

mixture of strong and lower 
textures 

 combined analysis approach necessary !!! 

♦ texture effect not fully removable : structure and microstructure  
♦ structure and microstructure unknown : texture  

Ferroelectric properties optimisation: polarisation vector along c  i.e. <001> // nfilm 

Pseudo cubic phase 
of PTC  

X-ray combined analysis approach  



Algorithm and methodology  

Rietveld cycle : 
Structure, microstructure 

QTA cycle : 
WIMV or E-WIMV 

Orientation distribution function 

MAUD program (Material Analysis Using Diffraction) : 
(Marquardt non linear least squares fit, for instance) 

1st cycle: integrated intensities (Le Bail extraction) è 
Pole figure construction  Phkl(χ,ϕ). 

Intensity corrections for textured samples: 
 

Ihkl(2θ, χ ,ϕ) = Ihkl(2θ) Phkl(χ ,ϕ)  

Combined analysis approach  

MAUD 



Ultrastructure PTC/Pt implementation 
Corrections are needed for volumic/absorption changes when the 

samples are rotated.  

Gives access to individual thicknesses in the refinement  

with a CPS detector : 

χ 

e/cosχ 

film e 

RX RX 

PTC : Cχ top film=g1 (1 – exp(-µTg2 / cosχ))/(1-exp(-2µT / sinωcosχ)) 

Pt : Cχ cov layer=Cχ 
top film(exp(-g2 ∑µ’iT’i / cosχ))/(exp(-2 ∑ µ’iT’i / sinωcosχ)) 

Combined analysis approach  



Pb0.76Ca0.24TiO3 (PTC) film 

2θ (°) 

 45 °  

0 ° 

χ 

a = 3.945(1) Å,  c = 4.080(1) Å 
T = 4080(10) Å,  tiso = 390(7) Å  

 ε = 0.0067(1) 

PTC 
2.1 
 
 
1  
mrd 
 

0.15 

Pt 

a = 3.955(1) Å, T' = 462(4) Å 
t'iso = 458(3) Å, ε' = 0.0032(1) 

10.2

1 mrd
0.03

10.2

1 mrd
0.03

10.2

1 mrd
0.03

RBragg = 6%  
Rw = 5% 

X-ray combined analysis approach  
Ricote, Morales et al. TSF 450, (2004) 128. 

15% of  c axes non oriented  
in film plane →  some weak  

polarization properties 



Residual stresses, Rietveld and texture 

Fe Cu 

Non-linearity in sin2ψ relation observed due to stress gradients or texture → 
Reuss, Voigt, Hill, Bulk geometric mean approaches. 

Combined analysis approach  

combined analysis approach 
necessary !!! 

♦ peak shifts bias structure and 
texture determination →  

residual stress must be determined  
 

♦ different deformation of differently 
oriented crystallites → 

 texture influences residual stress 



Extracted Intensities 

Orientation Distribution Function 

Residual stresses 
Strain Distribution Function 

Structure 
 + 

Microstructure 
 + 

phase % 

Popa-
Balzar,  
sin2ψ 

Structural parameters 
atomic positions, substitutions, vibrations 

cell parameters 
 

Multiphased, layered samples: 
Thickness, 

Anisotropic Sizes 
and µ-strains (Popa), 

Stacking faults (Warren), 
 

Phase ratio (amorphous + crystalline) 
                                  Le Bail          Rietveld 

Specular Reflectivity 

Roughness, 
electron 

Density & EDP, 
Thickness 

Le Bail 

Fresnel, M
atrix (Parrat), D

W
B

A 

WIMV, E-WIMV 
Harmonics 

 Rietveld 

MAUD implemented codes :  
parameter interdependency + formalism 
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pole figures 
inverse pole figures 

Combined analysis approach  
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Combined analysis approach on PTC films :  
Substrate influence on residual stress and texture  

Enhancement of <001> texture 

PTC on 
Pt/(100)SrTiO3 

PTC on 
Pt/(100)MgO 

PTC on 
Pt/TiO2/(100)Si 

Tensile 
stress 

Compressive 
stress 

Texture Index 
(m.r.d.2) 

  

2.1
 
 
 
 
 
5.1
 
 
 
 
 
7.9
  

Ferroelectric PTC X-ray combined analysis 



Film: fiber texture with 
multiple orientations →  

QTA analysis necessary ! 
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<εh2>Eh4 = E1h4 + E2k4 + E3ℓ4 + 2E4h2k2 + 2E5ℓ2k2 + 2E6h2ℓ2 + 4E7h3k + 4E8h3ℓ + 4E9k3h +
4E10k3ℓ + 4E11ℓ3h + 4E12ℓ3k + 4E13h2kℓ + 4E14k2hℓ + 4E15ℓ2kh

<Rh> = R0 + R1P2
0(x) + R2P2

1(x)cosϕ + R3P2
1(x)sinϕ + R4P2

2(x)cos2ϕ + R5P2
2(x)sin2ϕ + ... 

•  Texture helps the "real" mean shape determination 
•  Determination by peak deconvolution + Popa formalism 
Anisotropic crystallite shape :  

Popa formalism 
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Combined analysis approach : nc –Si films 

Anisotropic sizes and texture: 
 nanocrystallized Si thin film example 

3 nm 

Morales et al. JAP 97 (2004) 034307. 

→ microstrain 

X-rays

ω

(111)

(111)

<111>

X-rays

ω

(111)

(111)

combined analysis structure/microstructure/texture approach necessary! 
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Combined analysis approach : nc –Si films 

Crystallite shape schematic 
representation: 

 
Scherrer formula:  
lower anisotropy 

estimation +  
[111] size 

four time higher  
than reality ! 

a!

[111] 

[111]* 

10 nm 

fibre texture with multiple orientations  
never reaching pure  <111> texture 

component whereas  
[111] elongated crystallite 

→ in agreement with HRTEM observations 

 Anisotropic sizes (Å)   

d  

(cm) 

 

a  

(Å) 

  

[111] 

 

[220] 

 

[311] 

 

4 5.4466 (3)  94 (3) 20 (1) 27 (1)  

6 5.4439 (2)  101 (3) 20 (1) 22 (1)  

7 5.4346 (4)  99 (3) 40 (1) 52 (2)  

8 5.4461 (2)  100 (3) 22 (1) 33 (1)  

10 5.4462 (2)  98 (3) 20 (1) 25 (1)  

12 5.4452 (3)  85 (2) 22 (1) 26 (1)  

6 5.4387 (3)  89 (3) 22 (1) 28 (1)  

12 5.4434 (2)  88 (3) 22 (1) 24 (1)  

 

a-
Si

O
2 

[1
00

]-S
i  

Texture results 

001 

113 

110 

111 

221 

443 

332 
1110 

112 

 

      
 

     
 

          
 

        

      

  

  

  

  

 

 

  

1.39 

1 

0.79 

1.57 

1 

0.63 

1 

1.59 

0.45 

 

1.84 

1 

0.71 

1.95 

1 

0.40 
 

1 

0.50 

2.77 

 

 

1.72 

1 

0.66 

1.22 
 
 
1 

 

0.82 
 

 

 

  

  

  



Ä X-ray and neutron diffractions applied to QTA analysis of naturally 
deformed glaucophanite from the Western Italian Alps  

= winchitic amphiboles (≥ 97%)  

ê 

Comparison of two techniques reveals limits and problems of 
texture analysis related to strongly deformed polymineralic samples. 

 
Ä ODF measured and computed with 3 methods : 

● Direct X-ray peak integrations 
● X-ray combined analysis 
● Neutron combined analysis 

Ä Illustration of the combined analysis approach  
 QTA =  important tool in geology to describe anisotropy of fabrics, the 

mollusc and fossils phylogeny and geophysics. 
 

1)  Metamorphic Amphibolites from Alps: 
(M. Zucali, G. Gosso, DES, Milano) 

Geological samples 



Geological samples 

ω = 5.3° 

ω = 16° 

(χ, ϕ) summed X-ray diagrams  

Diagrams approximately close to 
random powder due to defocusing effect  
: pole figures incompletely measured ! 

High angular range less reliable 
(2θ > 40°): better to use ω = 16° 

Compared to a direct integration + some overlaps 
treated by WIMV method (intensity contribution 

assigned to each component of the muti-pole figure) 
Rietveld texture analysis is better to solve overlaps! 



Geological samples 

Neutron diagrams (D1B, ILL) 

ω = 10°, χ = 60°, ϕ = 0° 
Summed diagram close to a random powder 

(no defocusing effect) even if blind areas remain ! Lattice parameters Glaucophane 
(Comodi et al.) 

Winchite 
(Ghose et al.) 

a (Å) 9.5355 (7) 9.5310 9.7573 
b (Å) 17.7060 (2) 17.7590 17.9026 
c (Å) 5.2823 (7) 5.3030 5.2886 
β (°) 103.780 (9) 103.59 103.81 

ω = 10°, χ = 60°, ϕ = 0° 

Texture correction : neutron combined analysis approach  
with only one phase present (amphibole) 

Few overlaps in comparison with X-rays ! 



Grain size problems + heterogeneity 
of individual amphibole minerals →  

Neutron radiation better to probe 
the whole rock !! 

(more penetrative + large volume 
sample tested → better statistic)  

X-ray 

Neutrons 

Texture comparable with those 
described in amphiboles 

deformed at ≠  
pressure and temperature: 
[001]* and [110]* directions 
mainly // and ⊥ to lineation 



Texture of amphiboles collected at ≠ places and in ≠ lithologic types 

Geological samples 

Combined approach allows to access to pole figures for most of 
the rock-forming minerals (even for mica) 

*v 
*v 

Ä White mica and chlorite partially replace amphibole or fill small 
fractures with quartz and carbonates 



Degree of fabric evolution due to: 
- deformation partitioning at metric-scale 

- degree of chemical changes within amphiboles 
- evolving metamorphic conditions during Alpine subduction 

(60-100 Million years).  
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Geological samples 



Ä Illustration of the neutron combined analysis approach  
 

2) Polyphased Mylonite : Palm Canyon, CA 
(H.-R. Wenk, DEPS, Berkeley; B. Ouladdiaf ILL, Grenoble) 

Ä crystallite orientations strong incidence on deformations 
occurring during geological processes  + mutual deformations of 
several phases may play important rules in the global phenomena. 
 
 
Ä rock sample from Palm Canyon =  low symmetry polyphase 
materials deformed in the Santa Rosa mylonite zone during the late 
Cretaceous.  
 
 
Ä Texture resolved with neutrons (D1B, ILL) for polyphase rock 
(quartz, biotite and plagioclase considered as pure albite). 
 

Geological samples 



Strongly overlapped peaks intra- and inter-phases + textured sample →  
Combined analysis approach 

10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

Q
10

2Q
11

0

P1
31

Q
10

1 
+ 

B0
03

P2
01

 +
 B

11
1

B1
10

+0
20

P1
11

P1
11

B0
01

In
te

ns
ity

 (x
 1

06
)

2Theta (°)

PC 82 mylonite Biotite Quartz Albite Anorthite K-spar
Composition (weight %) 9.0 24.2 31.7 17.4 14.1

R3 Space group C2/m C-1 

Only 3 phases 
considered 

Geological samples 

Summed neutron diagram (D1B, ILL) 



Biotite: Quartz: 

Albite: 

foliation 

lineation 

Max. ODF with c-axes in the foliation  
plane + a-axes // lineation direction 

010 axes // lineation direction  

a-axes // lineation + b- and c-axes randomly 
distributed around a-axes.  

Orientationnal relationships 
 

// Lineation: 
<100>*-quartz // <100>*-albite  

// <010>*-biotite 
 

// foliation: 
<001>*-quartz // <100>*-biotite 

Geological samples 



Ä Illustration of the X-ray combined analysis approach  
 

3) Texture and structure of mollusc shells:  
Charonia lampas lampas and Pinctada maxima 

(S. Ouhénia Thesis – december 2008) 

Ä Tremendous work on mollusc shell growth + mollusc shell = 
fascinating examples of high resistant biocomposite materials. 
 Mollusc shell = two polymorphs of CaCO3 : aragonite + calcite 

+ organic phases 
 

For example: the organic part of the red Abalone Haliotis rufescens 
shell represents around 1 to 5% of the total weight and shell is 
3000 time more resistant than pure geological aragonite! 

 
Ä Nacre (aragonite) is significant in medicine (orthopedics) due to 

high osteoinductive properties. Maya Indians of Honduras already 
used nacre for dental implants 2000 years ago!  

 

Ä In modern orthopedic medicine, aragonite of Pinctada maxima 
stimulates bone growth by human osteoblasts. 

 CaCO3 mollusc shells 



Mediterranean sea and Eastern 
Atlantic carnivorous gastropod 
mollusc. Protected species in 
mediterranea.  
 

N = normal , M = margin and G = growth directions 

Ä SEM studies : 3 crossed lamellar layers of biogenic aragonite 

 OCL : Outer Comarginal 
Crossed Lamellae : lamellae 
plane // M 
 

 IRCL : Intermediate Radial 
Crossed Lamellae : lamellae 
plane ⊥ M 
 

 ICCL : Inner Irregular Complex 
Crossed Lamellae 

a) Charonia lampas lampas: Aragonitic shell 
 

Microstructure never reported →  determination by using SEM and X-ray 
combined analysis approach allowing to work with the real shell! 

 CaCO3 mollusc shells 



X-ray measurements with a large scanning grid of  5°x5° →  936 X-ray 
diagrams for each layer (no residual stress evidenced) 

ê 
Combined analysis approach : texture, cell parameters, atomic 
positions, ΔZ C-O1 distance related to aplanarity of CO3 groups.  

OCL 

IRCL 

ICCL 

layer  OCL IRCL ICCL 
a (Å) 
b (Å) 
c (Å) 

4.98563(7) 
8.0103(1) 
5.74626(3) 

4.97538(4) 
7.98848(8) 
5.74961(2) 

4.9813(1) 
7.9679(1) 
5.76261(5) 

ΔV/V 1.05 % 0.62 % 0.71 % 
OD maximum (m.r.d.) 
OD minimum (m.r.d.) 

299 
0 

196 
0 

2816 
0 

Texture index (m.r.d.2) 42.6 47 721 

OD 
reliability 

factors 

Rw (%) 14.3 11.2 32.5 

RB (%) 15.6 12.7 47.8 

Rietveld 
reliability 

factors  

GoF (%) 1.72 1.72 3.05 
Rw (%) 29.2 28.0 57.3 
RB (%) 22.9 21.7 47.2 
Rexp(%) 22.2 21.3 32.8 

Pure aragonite reference cell parameters : 
a= 4.9623(3) Å, b= 7.968(1) Å, c= 5.7439(3) Å  

Largest crystallite organisation closer  
to the animal 

 CaCO3 mollusc shells 



Recalculated pole figures 
OCL 

IRCL 

ICL 

Split of c axes around N 
+ two contributions //  

(G,N) plane. 

Fiber texture: c // N 

Split of c axis from N 
+ two contributions //  

(M,N) plane. 

Texture information coherent with 
usually admitted gastropods 

phylogeny for this taxon ! 

 CaCO3 mollusc shells 



Geological 
reference 

Charonia 
lampas 
OCL 

Charonia lampas 
IRCL 

Charonia 
lampas 
ICCL 

a (Å) 
b (Å) 
c (Å) 

4.9623(3) 
7.968(1) 
5.7439(3) 

4.98563(7) 
8.0103(1) 
5.74626(3) 

4.97538(4) 
7.98848(8) 
5.74961(2) 

4.9813(1) 
7.9679(1) 
5.76261(5) 

Ca 
y 
z 

0.41500 
0.75970 

0.41418(5) 
0.75939(3) 

0.414071(4) 
0.76057(2) 

0.41276(9) 
0.75818(8) 

C y 
z 

0.76220 
-0.08620 

0.7628(2) 
-0.0920(1) 

0.76341(2) 
-0.08702(9) 

0.7356(4) 
-0.0833(2) 

O1 y 
z 

0.92250 
-0.09620 

0.9115(2) 
-0.09205(8) 

0.9238(1) 
-0.09456(6) 

0.8957(3) 
-0.1018(2) 

O2 x 
y 
z 

0.47360 
0.68100 
-0.08620 

0.4768(1) 
0.6826(1) 

-0.08368(6) 

0.4754(1) 
0.68332(9) 
-0.08473(5) 

0.4864(3) 
0.6834(2) 
-0.0926(1) 

ΔZC-O1 (Å) 0.05744 0.00029 0.04335 0.1066 

Combined analysis : access to cell parameters and distorsion of aragonite  
shell without needs of powdering specimen !! 

Anisotropic cell distorsions yet observed 
in biogenic aragonite powderised layers 

ΔZC-O1 ä  from outer to inner layer correlated to the organic 
macromolecules presence + coherent with the æ  of texture 

strength  → control loss from macromolecules  
on aragonite stabilization farther from animal! 

 CaCO3 mollusc shells 



b) Pinctada maxima:  
shell nacre of giant oyster =  

biomaterial that stimulates bone regeneration + in vivo studies show its 
biocompatibility and that nacre also able to induce new bone formation  

Pinctada maxima 

Ä Geological nacre composition = pure aragonite (orthorhombic Pmcn) 
Microstructure = strongly textured pseudo hexagonal nacre tablets 

Aragonite 
Acidic Macromolecules 
Silk-fibroin-like proteins 
β-chitin 

Ä Pinctada maxima nacre = aragonite and organic phases (2% – 5%) :  
biogenic nacre  

X-ray Combined analysis approach : 2.5°*2.5° grid  
Better understanding of the “natural” nacre structure and 

microstructure in order to deposit synthetic nacre 

 CaCO3 mollusc shells 



Normalized pole figures : strong texture with c-axis 
orientation weakly tilted from the normal shell 

Geological reference Pinctada maxima 
a (Å)   
 b (Å)  
 c (Å) 

4.9623(3)   
7.968(1)   
5.7439(3) 

4.97071(4)  
7.96629(6)   
5.74804 (2) 

Ca 
y 
z 

0.41500 
0.75970 

0.41479    (3) 
0.75939    (2) 

C y 
z 

0.76220 
-0.08620 

0.7676      (1) 
-0.0831     (1) 

O1 y 
z 

0.92250 
-0.09620 

0.9134      (1) 
-0.09255   (7) 

O2 x 
y 
z 

0.47360 
0.68100 
-0.08620 

0.4678      (1) 
0.68176    (7) 
-0.09060   (4) 

ΔZ C-O1 (Å) 0,057 0,054 

Cell parameter 
distorsions 

due to the presence of 
organic molecules like in 

Charonia lampas 

Weak distorsion of the 
CO3 group  

 CaCO3 mollusc shells 

Rw = 21.95% 
RB = 24.92% 



MEB cross section image showing the Pinctada maxima brick wall 
nacre (sheet nacre) 

Nacre tablets of Pinctada maxima perfectly aligned with shell large 
domains showing common alignment of c-axes resembling a single-

crystal or textures observed in epitaxial films : 

Observed texture  ≠  from the columnar nacre evidenced in 
some gastropod (fiber textures) and Cephalopoda (double 

“twinned” textures) shells 

 CaCO3 mollusc shells 

Columnar nacre Sheet nacre 



Ä Illustration of the X-ray combined analysis approach  
 

4) Biomimetic CaCO3: Electrodeposited aragonite 
(Thesis of C. Krauss) 

Medical european law: forbids animal proteins in human body  
→  mimic textured hexagonal like aragonite 

 

Ä synthetic nacre for osteopathy on Ti substrate: 
● prostheses mainly in titanium subjected to bone resorption 
 

● Ti susbtrate : high strength, inertia and immunity to corrosion  
 

Ä CaCO3: 3 allotropic forms 
 

● Calcite (R3c - trigonal):  too much stable form but non osteoinductive 
 

● Vaterite (P63/mmc - hexagonal): non-stable form not good for 
applications 
 

● Aragonite (Pmcn - orthorhombic): metastable form ; Gibbs energy 
ΔG0(C->A) = -1kJ/mol     

ê 
Electrodeposition of CaCO3 in aragonitic form on titanium foil 

+ microstructure and texture caracterizations: SEM and X-Ray diffraction 
Biomimetic CaCO3 



Corresponding X-ray diagram: 
only aragonite is evidenced with  

a pronounced (00l) texture 

SEM backscattering images of deposited aragonite on Ti foils 

Nonoptimized deposited films: 
cauliflower-shaped aragonite + 

calcite + vaterite 

Optimized deposited films with nacre 
like pseudo hexagonal shaped crystals  

Recalculated pole figure : <00l> fiber like texture 

Texture strength 
far from natural nacre → 

differences can be  
associated to organic  

driven processes 

Biomimetic CaCO3 



Addition of Pinctada maxima organic molecules to the electrolyte: 
2 types of organic phases (polar and apolar)  

Apolar phase : cauliflower-shaped 
aragonite + calcite + vaterite 

Polar phase : compact cauliflower-
shaped aragonite + calcite + 

vaterite 

Unexpected reduction of the <00l> texture !  
Crystallite shape and texture strength must be improved! 

Biomimetic CaCO3 



Ä Illustration of the X-ray combined analysis approach  
 

5) Biomimetic CaCO3:  synthesis of CaCO3 polymorphs  
with polyacrylic acid (PAA) 

(S. Ouhénia thesis – december 2008) 

Ä Some studies show that surfactants can influence CaCO3 nucleation, 
growth and grain shapes and consequently control crystal phases 
formation not usually stabilized under natural environment. 
 

Ä Aragonite (nacre) metastable at room temperature transforms to 
calcite in natural environment. 

ê 
Many attempts to mimic aragonite, biological synthesis using different 
organic substrates and additives : for example aragonite thin films form 
on polyvinyl alcohol matrices in presence of polyacrilic acid (PAA)…. 
 
Ä This work: CaCO3 crystallization from aqueous solutions in presence 

of PAA at various temperatures (25°C to 80°C).  
PAA’s effects studied by SEM and X-ray diffraction. 

Biomimetic CaCO3 



At 25°C with and without PAA 
Vaterite Calcite 

Without PAA 

Spherical particles : 3µm Rhombic interpenetrated 
particles : 4µm 

Rb (%)= 6.53%;  Rw (%)= 8.18% 
Calcite : 71(1)% 

Vaterite :  29(1) % 

2 non textured polymorphs of CaCO3 are present 

Biomimetic CaCO3 



With PAA 

At 25°C with and without PAA 
Vaterite Calcite 

Deformed spheres agglomerated 
in raspberry particles :15 µm 

Rhombic particles with less 
regular faces and porosity : 10 µm 

Rb (%)= 9.79%;  Rw (%)= 12.34% 
Calcite : 49.5(6)%; volume decrease : 0.075% 
Vaterite 50.5(6)%; volume increase : 0.23% 

With PAA, ä % of vaterite 

Biomimetic CaCO3 



Aragonite: califlowers Vaterite : raspberries Calcite : regular rhombs 
At 50°C without PAA 

3 non textured polymorphs of CaCO3 are present 
+ anisotropic crystallite shape → Popa formalism 

Rb (%)= 6.81%;  Rw (%)= 8.40% 
Calcite : 47%   
Vaterite : 46% 
Aragonite : 7% 

Biomimetic CaCO3 



Aragonite : dendrites Vaterite flowers Calcite : porous rhombs 

At 50°C with PAA 

Rb (%)= 6.81%;  Rw (%)= 8.40% 
Calcite : 10.2% 
Vaterite : 79% 

Aragonite : 10.8% 

With PAA, strong ä % of vaterite 
+ ä % of aragonite 

Biomimetic CaCO3 



Calcite 
Anisotropic crystallite shapes at 50°C without and with PAA 

Aragonite Vaterite 

With PAA 

Without PAA 

c-elongated needles 
with c/b ∼ 0.11 

Quasi-cubic  
crystallites c-elongated needles 

with c/a ∼ 0.76 

flatness along c-
axis with c/a ∼ 1.36  

Ca-PAA complex adsorption 
on carbonate group faces 

blocks growth along c-axis 
+ prevents transformation 

in calcite ! 

Quasi-cubic 
crystallites 

Biomimetic CaCO3 

→ no site for Ca-
PAA complex 

adsorption 

Idem aragonite!  



At 80°C without PAA Acicular aragonite Vaterite sponges 

3 non textured polymorphs of CaCO3 are present 

Rb (%)= 5.05%;  Rw (%)= 6.86% 
Calcite : 7.3% 

Vaterite : 12.7% 
Aragonite : 80% !! 

With temperature ä, strong ä % of aragonite 
+ cell parameters close to the bulk ones 

Biomimetic CaCO3 



At 80°C with PAA 

SEM backscattered images:  
only aragonite needles are observed 

3 non textured polymorphs of CaCO3 are present 

Rb (%)= 7.25%;  Rw (%)= 9.17% 
Calcite : 8.5% 
Vaterite : 1.5% 

Aragonite : 89% !! 

With PAA, æ % of vaterite 
+ ä % of aragonite 

Conclusions: PAA and temperature ä  favor non textured aragonite growth :  
shift of chemical equilibrium of  3 polymorphs! 

Biomimetic CaCO3 



Ä greatest abundance and diversity during the Jurassic and Cretaceous 
periods. 

 
Ä The most common fossilised part of the internal shell = "rostrum“  
consists of massive calcite. The rostrum served as a counter-weight to the 
buoyancy provided by the chambered shell and also for protection of that 
delicate shell.  

Ä Belemnite rostrum =  
common name applied to an extinct order 
(Belemnoida) of molluscs belonging to the 
Cephalopoda (like squids, octopuses, and 

Nautilus).  

Ä Illustration of the neutron combined analysis approach  
 

6) Texture and phylogeny of mollusc shell fossils:  
Belemnite rostrum 

Ä Belemnites ranged at the largest genetic distance from actually measured 
species + can serve as an outgroup for a phylogenetic classification.  

Quantitative Texture Analysis provides a set of new characters usable as a 
complement for a phylogenetic interpretation in cladistic or phenetic approaches 

 
+  

in case of calcitic shell layers QTA is able to link extinct 
and living molluscs via fossilised species! 

 
Morales et al.(2002), Mat. Sci. For. 408, 1687 

Shell fossils : Texture and phylogeny 

Shell fossils : phylogenetic evolution determination + specifications of 
stratigraphic age of geological formations. 
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Belemnite rostrum Neutron diagram (D1B-ILL line): 
sum over 1368 scans over as 

many sample orientations.  
ê 

Pure calcite is observed 

Main pole figures:  
As in other 

cephalopod, 
calcite c-axes 

randomly distributed 
around belemnite 

rostrum cylindrical 
axis .  

 Intra-phase peak overlaps + texture →   
combined analysis approach 

c c 

Ä Presence of large grains (sizes range from few cm to over 1 meter for 
Belemnitae americanus) →  X-ray diffraction can’t properly probe texture !! 

Correlated to the c-axes of Nautilus sp. aragonite layers → 
Nacre not ancestral and might have evolved from original calcite :  

on the contrary of the common hypothesis ! 
Shell fossils : Texture and phylogeny 



Cr 2+ 

 Cr2+ ion under the 
tetrahedral ZnSe 

crystral-field. 

free Cr2+ ion 

Ä Combined analysis approach actual limitations:  
 

7) Multiphased Cr2+:ZnSe films: texture, anisotropic crystallite sizes, 
residual stresses , twin faults and phase analysis  

Ä 1996 : transition-metal doped II-VI zinc chalcogenide compound for room-
temperature laser materials in the mid-IR.    

 

Mid- IR region (2 – 5 µm) « molecular figerprint region » →  environmental, 
medecine, biological and defense applications 

ê 
Best candidate = Cr2+: ZnSe 

Ø  Cr2+:ZnSe films Realization of compact optically and  
electrically pumped mid-IR micro-lasers. 

fluorescence and stimulated emission optimization  
= production of quality films  

Multiphased Cr2+:ZnSe films : combined analysis approach actual limitations 
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Ä RX θ-2θ diagrams 

● cubic (C) and hexagonal (H) ZnSe 
 

● H-ZnSe more marked at higher PRF 
  

♦ highly textured with  
in majority <111>C-ZnSe // nfilm 

 

103 h 

103 h 

χ = 20° 

χ = 40° 

100 h 
101 h 

Anisotropic crystallite shapes 

Ä χ-scans with ω =13.65° 

Multiphased Cr2+:ZnSe films : combined analysis approach actual limitations 



ω =13.65°, PRF = 200W 

Residual strains for both C-ZnSe and H-ZnSe ! 
Biaxial model with σ11 = σ22 due to fibre like texture 

Fibre strong textures + 2 phases + anisotropic crystallite shape  
+ residual strains  → combined analysis approach is necessary! 

Multiphased Cr2+:ZnSe films : combined analysis approach actual limitations 



Phase 
Cell 

parameters 
(Å) 

In-plane 
stress (MPa) 

Anisotropic sizes (Å) 

[111] [100] [110] [103] 

C-ZnSe a = 5.6497(3) 263 (14) 112 (1) 117 (5) 85( 1) - 

H-ZnSe a= 3.9527(6) 
c = 6.7154(8) 436 (25) - 244 (1) 244 (2) 20(2) 

Rexp = 11.1% 
RW = 25.7% 

% H-ZnSe = 45.4% 

Tensile in plane stress  
≠ Rizzo et al. 

Fibre strong 
textures + 2 phases 

+ anisotropic 
crystallite shape  

+ residual strains! 

Multiphased Cr2+:ZnSe films : combined analysis approach actual imitations 



Ä C-ZnSe texture : 

strong <111> fibre texture with some residual orientations 

Ä H-ZnSe texture : 

unique <001> strong fibre texture 

Multiphased Cr2+:ZnSe films : combined analysis approach  actual limitations 



Refined fibre like textures independent of the substrate choice ! 

Amorphous layer at the interface 

Bright field TEM image HRTEM image 

Strong <111> texture for the C-ZnSe  
+ twin faults evidenced in H-ZnSe 

Multiphased Cr2+:ZnSe films : combined analysis approach actual limitations 



χ -sum diagram at ω =13.65° with residual strains:  
fit still not optimum!! 

Necessity of incorporation of 
twin faults in H-ZnSe  

as evidenced in TEM images 

Better reproduction for 2θ > 35° with H-ZnSe twin faults  
probability of 45.7 (6)%;  

but still discrepancies for 2θ < 35° !!!  

Multiphased Cr2+:ZnSe films : combined analysis approach actual limitations 

Discrepancies not resolved with introduction of  
stacking faults and micro-strains !! 

→ another still unidentified phenomenon ?? 
ê 

Intergrowth between C-ZnSe and H-ZnSe must play  
a rule + need to be implemented in MAUD! 

 



THANK YOU FOR YOUR ATTENTION !!! 


