

Structure and Phase Analyses of Nanoparticles using Combined Analysis of TEM scattering patterns

P. Boullay¹, L. Lutterotti² and D. Chateigner¹

¹ CRISMAT, UMR 6508 CNRS / ENSICAEN, 6 Bd du Maréchal JUIN 14050 CAEN Cedex, France

² Department of Industrial Engineering, University of Trento, 38123 TRENTO, Italy

- 1. Phase search and indexing
- 2. Sizes, shapes and textures
- 3. Structure refinements

Quantitative Analysis of Electron Powder Diffraction

IMC 2014 – Prague

Quantitative and <u>statistically representative</u> analysis of crystallite sizes and shapes, structure and crystallographic texture of nanoparticles in the form of powders and thin films?

Extraction of intensities from electron diffraction "ring patterns" for quantitative or semi-quantitative analysis ...

- ➤ Vainshtein (1964), …
- PCED 2.0 : X.Z. Li, Ultramicroscopy 110 (2010) 297-304
- ProcessDiffraction : J.L. Labar, Microsc. Microanal. 15 (2009) 20-29
- > TextPat : P. Oleynikov, S. Hovmoller and X.D. Zou in Electron Crystallography
- > The MAUD program : L. Lutterotti Nuclear Inst. and Methods in Physics Res. B268 (2010) 334-340.

Materials Analysis Using Diffraction

http://www.ing.unitn.it/~maud/

MAUD Rietveld pattern fitting

(COD phase search procedure)

Peak location

Peak fitting

Structure refinement

Evolutionary Simulated Annealing Marquardt (Least squares) Metadynamics optimization Simplex (Nelder-Mead) Genetic

> X-ray Neutron Electron

Delft size-strain (PV) Popa anisotropic Size/Strain distributions Planar faulting (Warren) Turbostratic (Ufer)

Size-Strain

March-Dollase **Texture** Harmonic (E)WIMV Standard Functions

Residual stresses

Geometric Voigt, Reuss, Hill Triaxial Stress

IMC 2014 – Prague

Intensity extraction along the rings by segments using an ImageJ plugin

IMC 2014 – Prague

Line Broadening in Powder Diffraction

measured profile $h(x) = f(x) \otimes g(x) + b(x)$

Line broadening causes

$$h(x) = f(x) \otimes g(x) + b(x)$$

sample contribution

instrumental broadening

- instrumental broadening
- finite size of the crystals (acts like a Fourier truncation: size broadening)
- imperfection of the periodicity (due to d_h variations inside crystals: microstrain effect)
- generally: 0D, 1D, 2D, 3D defects

All quantities are average values over the probed volume

- electrons, x-rays, neutrons: complementary
- distributions: mean values depend on distributions' shapes

Extraction of f(x) can be obtained by a whole-pattern (Rietveld) analysis Need to know g(x) the instrumental broadening !

The instrumental Peak Shape Function is obtained by analysing nanoparticules of known sizes and shapes as obtained from X-ray analyses

Mn₃O₄ hausmannite (L. Sicard et al, J. Magn. Magn. Mater. 322 (2010) 2634-2640)

Microstructure of nanocrystalline materials: TiO₂ rutile ⁽¹⁾

from phase search: TiO2 rutile $P4_2$ /mnm a= 4.592Å a=2.957Å (COD database ID n°9001681)

(1) M. Reddy et al., ElectroChem. Com. 8 (2006) 1299-1303

Sizes, shapes and textures

IMC 2014 – Prague

Sizes, shapes and textures

IMC 2014 – Prague

The features available in MAUD allow a full quantitative texture analysis for general cases (not only fiber textures) from EPD patterns with the obtention of accurate pole figures

QTA analysis of Pt thin film deposited on Si

{111} pole figure from ODF refinement

+25° to -25° step 5°

For application on textured thin film see also M. Gemmi et al., J. Appl. Cryst. 44 (2011)

- microstructural features can be obtained in the pattern-matching mode
- not convincing using structure factors from kinematical approximation ...
- ... much better when using the 2-beam or Blackman correction

- microstructural features can be obtained in the pattern-matching mode
- not convincing using structure factors from kinematical approximation ...
- ... much better when using the 2-beam or Blackman correction

Structure and Phase Analyses of Nanoparticles using Combined Analysis of TEM scattering patterns

> automatic phase search procedure (COD database, multi-phases)

Diffraction pattern and sample composition	
Upload diffraction pattern: Choose File no file selected Structures database: COD_all.sqlite +	wh
Atomic elements in the sample: O AI Ca F Zn	
Threshold phase density: 0.95 Maximum number of phases: 7	
Crystallisation: normal +	
Experiment details Radiation: • X-ray tube: Cu ‡ Other : x-ray ‡ Wavelength (Å): 1.540598 Instrument geometry: • Bragg-Brentano (theta-2theta) Bragg-Brentano (2theta only), omega: 10 Debye-Scherrer Transmission Instrument broadening function: High ‡	250.0 - 200.0 - Eug 150.0 - 100.0 -
Search and quantify	

whole-pattern S/M procedure

(kinematical approximation)

http://nanoair.dii.unitn.it:8080/sfpm and http://cod.iutcaen.unicaen.fr

Structure and Phase Analyses of Nanoparticles using Combined Analysis of TEM scattering patterns

- > automatic phase search procedure (COD database, multi-phases)
- > average lattice cell parameters and crystallite size (anisotropic shapes)
- > accurate texture analysis (general cases, ODF, ...)

... can be obtained in the Pattern matching mode

structure refinements are possible within MAUD (kinematic or Blackman)

... implementation of PDF approach soon

Thank you for your attention

V. Pralong and V. Caignaert (TiO₂ nanoparticules) @ CRISMAT – Caen

- L. Sicard and S. Ammar (Mn₃O₄ nanoparticules) @ ITODYS Paris 7
- S. Gascoin (XRD measurements) @ CRISMAT Caen

ANR FURNACE, BAMBI