

XXII MEETING OF THE INTERNATIONAL MINERALOGICAL ASSOCIATION 13-17 AUGUST 2018 | MELBOURNE

A NEW HYPERSPECTRAL LIBRARY CONNECTED TO SOLSA OPEN DATABASES

for on-line-real-time analyses of Ni laterites & Bauxite

Presenter: Beate Orberger

Thanh Bui^{1,8}, Beate Orberger², Simon B. Blancher¹, Saulius Grazulis⁴, Yassine el Mendili⁵, Henry Pilliere⁶, Nicolas Maubec⁷, Xavier Bourrat⁷, Ali Mohammad-Djafari⁸, Stéphanie Gascoin⁵, Daniel Chateigner⁵, Thomas Lefevre⁶, Celine Rodriguez¹, Anas El Mendili⁶, Cedric Duée⁷, Dominique Harang⁶, Thomas Wallmach¹, Monique Le Guen⁹

- 1) Eramet Research, Eramet Group, Trappes, France
- 2) GEOPS-Université Paris Sud, Orsay,; Catura Geoprojects, France
- 3) Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
- 4) Université de Caen Normandie, Normandie Université, Caen, France
- 5) ThermoFisher Scientific, Artenay, France
- 6) BRGM, Orléans, France;
- 7) L2S, CNRS, Centrale Supélec, France

8) Eramet Nickel Division, Eramet Group, Trappes, France

- Introduction
- Databases
 - Sample database
 - Raman open database
 - Hyperspectral library
- Hyperspectral imaging
 - Hyperspectral library
 - Sparse unmixing techniques
 - Results
- Conclusions and perspectives

WHAT IS SOLSA ?

Interactive & interconnected

- Drilling (presentation Eijkelkamp et al.)
 Chemical & mineralogical analyses systematic
- = > definition & analyses of Regions of interest
- Actionable Data

=> NEAR-REAL-TIME DECISION MAKING

....towards automated, continous exploration, mining & processing

4-years 10 M€, 4 countries, 9 partners

This project has received funding from the European Union' research and innovation program under grant agreement Nc

- Common & efficient
 Data Architecture
- Reliable, validated
 Open data bases
- Deep learning Software

1st SOLSA prototype validated for Nickel-laterites (ERAMET end user)

Ni- laterites (tropical countries): 70 % world's Nickel resources (40% of Ni production), but also Co, (Sc target) EU for steel-alloy-chemical industries = > EU technologies

- Grade decrease (0.5 1 % Ni)
- Multiple metal (Ni, Co, Sc) carrierminerals of different physicochemical properties (part in swelling clays)
- Heterogeneities: hard loose material

- s project has received funding from the European Union's Hor earch and innovation program under grant agreement No 6898
- Inaccurate resources & reserves estimates,
- Insufficient Metal Recovery
- Dysfunction in processing

Complex materials need a multi-instrumental approach

SOLSA ID Analyse & Identification in **field & industrial applications**

on line-on-mine

Thanh M. BUI

- Introduction
- Databases
 - Sample database
 - Raman open database (ROD) (El Mendili et al, this session)
 - Hyperspectral library
- Hyperspectral imaging
 - Hyperspectral library
 - Sparse unmixing techniques
 - Results
- Conclusions and perspectives

Sample database: Key issues

- ID cards of reference samples-sample library: geological-mine context, macroscopic and microscopic description (ISO 14688, 14689), laboratory analyses (XRF, EPMA, XRD), (mine specific here for Ni-laterites)
- Relational SQL database: comparing lab, handheld (pXRF, pPIR) and SOLSA on-line analyses.
- Definition of key parameters of the reference samples important for the mining company (based on macroscopic description).
- Definition of homogeneous units when implementing data

- Raman open database:
 - Collection of Raman spectra of standard samples.
 - Available at <u>http://solsa.crystallography.net/rod/</u> talk: Yassine El Mendili et al. this session
- Hyperspectral library (under construction):
 - Collection of spectra of pure minerals
 - Will be available at <u>http://solsa.crystallography.net/hod/</u>

g

- Introduction
- Databases
 - Raman open database
 - Sample database
 - Hyperspectral library
- Hyperspectral imaging
 - Hyperspectral library
 - Sparse unmixing techniques
 - Results
- Conclusions and perspectives

Hyperspectral imaging for mineral identification

Note: if the deepest absorption is in the AIOH waveband, absorptions at these wavelengths will include SECONDARY AIOH absorptions of that mineral

Molecules	Dominant absorption features
ОН	1400nm (1550nm and 1750-1850nm in some minerals)
Water	1400nm and 1900nm
AIOH	2160-2228nm
FeOH	2230-2295nm
MgOH	2300-2370nm
CO ₃	2300-2370nm (and also at 1870nm, 1990nm and 2155nm)

Crystallinity variations -> shape variations Compositional variations -> wavelength shifts

- Statistical approaches (Debigion et al. 2008 ; Altmann et al., 2015)
 - The likelihood: data generation models
 - Priors: constraints on the endmembers
- Geometrical approaches (Nascimento et al., 2005; Bioucas-Dias et al. 2009)
 - The observed hyperspectral vectors: simplex set whose vertices correspond to the endmembers.
- Sparse regression

- The observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance (spectral library).
- Unmixing amounts to finding the optimal subset of signatures in a spectral library that can best model each mixed pixel in the scene.
- The sparse unmixing exploits the usual very low number of endmembers (maximum of 4, Berman et al., CSIRO, 2017) present in real images, out of a spectral library.

Hyperspectral library

- Other libraries (e.g., USGS, CSIRO, John Hopikins Univ.) may not contain spectra of pure minerals.
- SOLSA includes spectra that are collected with our instruments used in our operational exploration.
- Minerals and mineral associations typical for Ni laterites (and different mine types) may not be present in other libraries.

Reference spectral libraries: USGS: <u>https://speclab.cr.usgs.gov/</u> NASA ASTER: https://speclib.ipl.pasa.gov/

SOLSA Hyperspectral library at present

- Rocks, pure mineral samples: BRGM, ERAMET, National Museum of Natural History, France
- Spectra extraction: ENVI 5.4 & G-MEX (taking into account: wavelength positions, the relative intensities of the absorption features.

The optimization is based on the alternating direction method of multipliers (ADMM)

Bioucas-Dias et al., 2010 Iordache et al., IEEE Trans, 2014 Afonso et al., IEEE Trans, 2011

Signal to reconstruction error (SRE) ratio:

$SRE=10\log E \parallel \mathbf{x} \parallel 1^{1} \ge \mathbb{E} \parallel \mathbf{x} - \mathbf{x} \parallel 1^{1} \ge \mathbb{E}$		FCLS		SUnSAL		CLSUnSAL	
	ĸ	SRE	Time	SRE	time	SRE	time
	2	14.24	0.022	14.94	0.254	16.74	0.228
SNR = 40 dB	3	6.41	0.019	7.45	0.259	11.95	0.230
	4	5.25	0.022	7.07	0.499	7.16	0.453

- FCLS: Fully constrained least squares
- SUnSAL: Sparse unmixing by variable splitting & augmented Lagrangian CLSUnSAL: Collaborative sparse unmixing by variable splitting & augmented Lagrangian

Data acquired: serpentinized harzburgite sample

QEMSCAN results

Proportion (abundance) of each mineral:

CHROMITE

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0

ΟΡΧ

Thanh M. BUI

20

Computation

time: 4 mins

serpentinized harzburgite sample

RGB image

Unmixing

QEMSCAN

Computation time: 4 mins

Conclusions and Perspectives

- Using our hyperspectral library, the CLSUnSAL provided the highest accuracy.
 - Need to improve the computation time.
 - Incorporate the spatial context to the unmixing problem
- The hyperspectral library is constantly extended
 - 257 spectra have been extracted for 49 minerals
- A graphic user interface is under development
- Machine learning classification approaches have been implemented.
- The connection between the databases will be done.

Thank you for your attention!