

COMPARISON OF FOUR DATA ANALYSIS SOFTWARE FOR COMBINED X-RAY REFLECTIVITY AND GRAZING INCIDENCE X-RAY FLUORESCENCE MEASUREMENTS

leti

Bérenger Caby ⁽¹⁾, Fabio Brigidi ⁽²⁾, Dieter Ingerle ⁽³⁾, Blanka Detlefs ⁽¹⁾, Gaël Picot ⁽¹⁾, Luca Lutterotti ⁽²⁾, <u>Emmanuel Nolot ⁽¹⁾</u>, Giancarlo Pepponi ⁽²⁾, Christina Streli ⁽³⁾, Magali Morales ⁽⁴⁾, Daniel Chateigner ⁽⁵⁾

- (1) CEA, LETI, MINATEC Campus, Grenoble, France
- (2) Fondazione Bruno Kessler, Trento, Italy
- (3) Atominstitut, Vienna University of Technology, Vienna, Austria
- (4) CIMAP, Caen, France
- (5) CRISMAT-Ensicaen, IUT-Caen UCBN, Caen, France

Ceatech OUTLINE

- GiXRF XRR combined analysis
- Comparison of 4 data analysis software
 - GIMPY, JGIXA, MAUD, MEDEPY
 - Main features
 - Key differences
 - Material Database
 - Sample definition
 - Instrumental function
 - XRR simulation
 - GiXRF simulation
 - Fitting capabilities
- Summary and outlook

NON-DESTRUCTIVE ELEMENTAL DEPTH PROFILING WITH X-RAYS

Analysis of (ultra)thin layered films for advanced applications (micro/nano electronics, memory, photonics, PV, ...)

Analytical challenges

- Reduced material quantities ⇒ limits of detection
- Material properties different from bulk ⇒ non-existent standards
- Analysis of interfaces and buried layers

 ⇒ destructive or indirect methods
- Accuracy, standardization

Need for non-destructive depth-profiling method

- Avoid artifacts (preferential sputtering, atom mixing, implantation)
- Limited (if any) degradation of the sample
- On beamlines, in the Labs, ... in R&D cleanrooms, in industry

Combined GIXRF/XRR ?

GIXRF+XRR ANALYSIS

XRR : FT(electron density), $\theta \ge \theta_c$

GiXRF: FT(atomic density), $\theta \leq \theta_c$

Combined XRR-GiXRF: depth-dependent characterization

GIXRF+XRR DEPTH PROFILING

$$I_{x}(\theta, \alpha, E_{0}) = I_{0} G(\theta, \alpha, E_{0}) \sum_{j=1}^{n} S_{x,E_{0}} \exp \left[-\sum_{n=1}^{j-1} (\mu / \rho)_{n,E} \rho_{n} d_{n} \right]$$

$$\int_{C_{j}}^{d_{j}} C_{j}(z) A^{XSW}(E_{j}, \theta, z) \exp \left[-(\mu/\rho)_{j,E} \rho_{j} z\right] dz$$
Propagation of GiXRF-XRR requires:

- Fundamental parameters (timized protocols absorption coefficients), densities, XSW enhancement Data reduction software
- Thicknesses of layers to fit
- Quantification of the XRF dose (geometrical factors)
- Same model for XRR and GiXRF: increase the level of information. Add constraints & reduce uncertainties

SOFTWARE	AUTHORS	KEY FEATURES	REFERENCES
GIMPY Grazing Incidence Material analysis with Python	G. Pepponi, F. Brigidi	XRR, XRF, GiXRF Integrated intensities	• TXRF'15 : Frid. 10.10 am
JGIXA	D. Ingerle	XRR, GiXRF Integrated intensities	 Spectrochimica Acta Part B 99 (2014) 121–128 TXRF'15: Wed. 3.30 pm
MAUD Material Analysis Using Diffraction	L. Lutterotti	XRR, XRF, GiXRF, XRD Full spectrum	 Nuclear Inst. and Methods in Physics Research, B, 268, 334- 340, 2010 http://maud.radiographema.c om/
MEDEPY Material Elemental DEpth profiling using PYthon	B. Detlefs, G. Picot, E. Nolot, H. Rotella	XRR, GIXRF, XSW Integrated intensities	• TXRF'15 : Frid. 9.30 am

Ceatech OVERVIEW

Common points

- XRR based on Parrat formalism (L. G. Parratt, Phys. Rev., vol. 95, no. 2, p.359, 1954)
- GiXRF based on De Boer formalism (D. K. G. de Boer, http://dx.doi.org/10.1103/PhysRevB.44.498)

Key differences

- XRF : full spectrum vs integrated intensity
 - Additional SW (e.g PyMCA) is required to extract the integrated XRF intensities for each angle / each XRF line
- Material database
- Sample definition
- Instrumental function
- Other features (simulation & fitting modules)

Ceatech MATERIAL DATABASE

The values of parameters such as:

Fluorescence yield, Atomic scattering factors, Photoelectric, elastic and inelastic scattering cross sections ...

may not be constant over publications / material database

SOFTWARE

MATERIAL DATABASE

GIMPY, JGIXA, MAUD

https://data-minalab.fbk.eu/txrf/xraydata/element/

MEDEPY

- User defined
- Xray Lib (http://ftp.esrf.eu/pub/scisoft/xraylib/readme.html)

NiO₂ (5nm, d=6.0g/cc)

Ni (50 nm, d=8.9 g/cc)

Si (sub, d=2.33 g/cc)

Ceatech SAMPLE DEFINITION

SOFTWARE	PARAMETERS	REMARKS
GIMPY, JGIXA	Thickness Roughness Mass density Stoichiometry	No correlation between mass density and stoichiometry
MAUD	Thickness Roughness Phase Stoichiometry	 XRD-based definition of the sample structure Compatible with XRR-GiXRF-XRD combined analysis
MEDEPY	Thickness Roughness Mass density or atomic density Stoichiometry	 Mass density and stoichiometry are correlated GENX-based definition

ceatech SAMPLE DEFINITION (MAUD)

leti

Density / Stoechio described by phase

- Atoms per cell
- Position of the first atom
- Position of all the atoms

Ceatech INSTRUMENTAL FUNCTION

leti

XRR

Divergence ~ overall resolution

 NiO_2 (5nm, d=6.0g/cc) Ni (50 nm, d=8.9 g/cc) Si (sub, d=2.33 g/cc)

GiXRF

- Divergence (convolution ~ approximation ...)
- Geometrical correction

Ceatech GEOMETRICAL CORRECTION

leti

Geometrical correction

- Acceptance function (detected area corrected by solid angle of detection)
- Spatial intensity distribution of the incident beam (e.g gaussian)

theta-theta configuration Detector angle = 90°

W. Li et al, Review of Scientific Instruments **83**, 053114 (2012)

Ceatech GEOMETRICAL CORRECTION

theta-theta configuration Detector angle ≠ 90°

theta-2theta configuration **Detector angle** ≠ 90°

Ceatech ACCEPTANCE FUNCTION

leti

JGIXA

- Rectangular function (width L_d)
- Parameter = L_d
- $1/\cos(\theta)$ correction for θ -2 θ geometry

G(
$$\theta$$
) $\propto \frac{\Delta\Omega}{4\pi} \int_{-L_s/2}^{L_s/2} g(\theta, t) \prod_{L_d} (t) dt$

Spatial intensity distribution of the incident beam

Rectangular function of the detectable area with a width of Ld

GIMPY, MEDEPY

- Parameters d_1 , d_2 , d_p
- Heumans lambda function (solid angle of detection)
- Independent (resp. dependent) of theta in θ - θ (resp. θ - 2θ) geometry

Ceatech GEOMETRICAL CORRECTION

SIMULATION

NiO₂ (5nm, d=6.0g/cc)

Ni (50 nm, d=8.9 g/cc)

Si (sub, d=2.33 g/cc)

XRR simulation

GiXRF simulation

For NiO₂/Ni/Si sub case study where thicknesses, densities and roughness were varied and when using the same database :

- the simulated XRR data obtained with the 4 different software were found almost perfectly identical
- the simulated GiXRF data obtained with the 4 different software on a « perfect » tool (no divergence, no instrumental function) were found almost perfectly identical

Impact of the instrumental function (overall divergence) is almost perfectly identical for the different software

- Limited discrepancy induced by divergence
- Significant impact of the geometrical correction
- Only GIMPY includes secondary fluorescence...

FITTING CAPABILITIES

SOFTWARE	CAPABILITIES	REMARKS
GIMPY		Fitting module under development
JGIXA	Combined fitting of XRR and GiXRF datasets acquired at the same energy	Fast and user friendlyMonochromatic primary radiation
MAUD	 Unique capability for XRR- XRD-GiXRF combined analysis Stoichiometry 	 Full spectrum only GiXRF instrumental function to be corrected! Monochromatic and polychromatic primary radiation
MEDEPY	 Combined fitting of various XRR and GiXRF datasets acquired at various energies Stoichiometry 	 Monochromatic primary radiation Still under optimization (definition of FOM for combined analysis)

SUMMARY AND OUTLOOK

- Analysis of (ultra)thin layered films for advanced applications (micro/nano electronics, memory, photonics, PV, ...)
- Need for combined GIXRF/XRR as a non-destructive depth-profiling method
 - On beamlines, in the Labs, ... in R&D cleanrooms, in industry
- GiXRF/XRR software
 - 4 powerful software have been tested
- Need for standardization (reduced instrumental function ...) in order to meet the needs for depth-dependent quantitative analysis in Labs, R&D facilities and industry

Thank you for your attention!