

X-rays and electrons diffraction for nanopowders

D. Chateigner, L. Lutterotti, O. Pérez, Ph. Boullay, B. Mc Mahon, J.R. Helliwell

IUT-UCBN, CRISMAT, Caen, France Dept. Eng. Mat., Univ. Trento, I International Union of Crystallography, Chester, UK

CODATA-VAMAS, Nano Task Group Workshop, Paris, 30-31st May 2013

EMT nanocrystalline zeolite

Ng, Chateigner, Valtchev, Mintova: Science 335 (2012) 70

Gold thin films

Crystallite size (Å) along	Film thickness					
	10nm	15nm	20nm	25nm	35nm	40nm
[111]	176	153	725	254	343	379
[200]	64	103	457	173	321	386
[202]	148	140	658	234	337	381

Microstructure of nanocrystalline materials: TiO₂ rutile

► quantitative analysis of electron powder diffraction (ring) pattern ?

Intensity-spectra extraction

Full-Pattern Search-Match

www.iutcaen.unicaen.fr

Rutile nanocrystalline Electron Powder Diffraction pattern

TEM in seconds (few µg)

 $<\!\!R_{\mathbf{h}}\!\!> = R_0 + R_1 P_2^{\ 0}(x) + R_2 P_2^{\ 1}(x) \cos\varphi + R_3 P_2^{\ 1}(x) \sin\varphi + R_4 P_2^{\ 2}(x) \cos2\varphi + R_5 P_2^{\ 2}(x) \sin2\varphi + \dots$

Why not more ?

