Combined Texture-Structure-Microstructure analysis using diffraction

matériaux *cristallins* ou micro-cristallisés à propriétés *anisotropes*

• Elaboration de matériaux de complexité croissante, <u>applications</u> de + en + <u>spécifiques</u>

• Désir d'*optimisation* et de *compréhension* des anisotropies physico-chimiques de matériaux

Summary

- Usual up-to-date approaches for polycrystals
 - Texture
 - Structure-Microstructure
 - Problems on ultrastructures
- Combined approach
 - Experimental needs
 - Methodology-Algorithm
 - Ultrastructure implementation
 - Case studies
- Future trends

Texture Analysis

We have to invert (Fundamental equation of Texture Analysis):

$$P_{hkl}(\vec{y}) = \frac{1}{2\pi} \int_{\langle hkl \rangle / / \vec{y}} f(g) d\widetilde{\varphi}$$

WIMV refinement method: Williams-Imhof-Matthies-Vinel

$$f^{n+1}(g) = N \left[\frac{f^n(g) f^0(g)}{\prod_{hkl} \left(P_{hkl}^n(\vec{y}) \right)^{\underline{l}}} \right]$$

Ruer - Baro (vector method) $f(g) = |\sigma| P_{\vec{h}}(\vec{y})$

Pawlik (ADC)

Recalculation of pole figures or inverse pole figures from the ODF

{001} pole figure for a cubic crystal system

ODF Completion

- Several {hkl} pole figures needed to calculate f(g)
- Each f(g) cell (98000 at total) needs 3 paths from experiments
- More than 3 is better !
- Spectrometer space is complicated (5 angles, 2 shaded area)

- defocusing (high χ)
- blind area (low χ)
- increase at low ω , where high intensity peaks are (LP factor)

Needs for a tool for an automatic search of the best experimental conditions:

Fortran code to estimate the orientation space completion: τ , ω , χ , ϕ and CPS ranges, 2 θ hkl's, cradle shades (in BEARTEX)

Usual Structure-Microstructure Analysis (Full pattern fitting, Rietveld Analysis) Si₃N₄ matrix with SiC whiskers:

$$I_{hkl}(2\theta) = S \left| F_{hkl} \right|^2 m_{hkl} \frac{L_P}{V_c^2} P_{hkl}$$

S: scale factor (phase abundance) F_{hkl} : structure factor (includes Debye-Waller term) V_c : unit-cell volume F_{hkl} : texture parameter (March-Dollase ...)

 $S_{hkl}(2\theta) = S_{hkl}^{I}(2\theta) * S_{hkl}^{S}(2\theta)$

S^I: instrumental broadening
 S^S: Sample aberrations

 crystallite sizes (iso. or anisotropic)
 rms microstrains ε

Problems on ultrastructures

- Strong intra- and inter-phase overlaps
- Mixture of very strong and lower textures
- texture effect not fully removable: structure
- structure unknown: texture

Direct Integration of Peaks up to recently: best existing technique for texture

Integration + corrections + ODF refinement

Limited nb of PFs (polyphase) Only access to PTC, badly ! **No control of ultrastructure** parameters

Combined approach

Experimental needs

Mapping Spectrometer space for correction of:

- instrumental resolution
- instrumental misalignments

Methodology-Algorithm

Pole figure extraction (Le Bail method): $P_{hkl}(\chi, \varphi)$

Rietveld and WIMV algorithm are alternatively used to correct for each others contributions: Marquardt nonlinear least squares fit is used for the Rietveld.

Maud - hg1a1.par	Microstructure
	Options Edit
	Line Broadening model: Delf Options and values
Magnesium Stata Sets 1 Maccol Samples	Size-Strain model: Popa rules Options and values
SIC-6H	Antiphase boundary model: none abm Options and values
Edit	Planar defects model: none nd x Ontions and values
X Remove	-Microabsorption correction
	Grain size (microns): 0
Operator: Luca Lutterotti	Cancel
Талын	
Options Edit	Options Edit
Phase id: SiC	Texture model: arbitrary tex Texture options
Symmetry:	none tex March-Dollase
Convention:	WIMV Maximum Entropy
Space group: P63mc Site label:	Atom type: Si
Cell parameter Microstructure Si1	Quantity: 1.
Texture Micromechanic Si3	✓ X. 0.
Magnetic str. add site	y: 0.
Site positions	esitions B factor: 0.41559915
Crystal unit	
4,25,201257,Tayouc-javax.swnng.skoocraneskooccayouc, ull,border=,flags=2,maximumSize=,minimumSize=,prefer abled=true] finalizing	redSize=],rootPaneCheckingEn

Polyphase texture analysis: Direct Integration vs Combined

Dolomite/Calcite mixture: well separated peaks

Textures show 0.2 mrd difference at max. only texture reliability factors lowered by 3 %

+ microstructural parameters

Phase analyses:

Structures are found the ones in litterature refined cell parameters: dolomite a=4.8063(4)Å c=16.0098(4)Å calcite a=4.9755(4)Å c=16.998(3)Å

Phase quantity: Combined approach: dolomite 93.7 % calcite 6.3 % Optically/Chemically:dolomite 90 % calcite 10 %

+ dolomite mean crystallite size: 2000(80) Å

Quantitative phase and texture-analysis ceramic-matrix composites

Si₃N₄ matrix with SiC whiskers

Goodness of fit: 1.806665 Rwp (%): 17.10033 Rb (%): 12.54065 Rexp (%): 9.465139

	$S1_3N_4$	
Vol. fraction (%):	75.8	
Part. Size (Å):	3800	
rms micro-strains (%):	4.2 10-4	

24.2 2200 2.8 10⁻⁴

Ultrastructure implementation

Corrections are needed for volumic/absorption changes when the samples are rotated. With a CPS detector, these correction factors are:

$$C_{\chi}^{\text{top film}} = g_1 \left(1 - \exp(-\mu T g_2 / \cos \chi) \right) / \left(1 - \exp(-2\mu T / \sin \omega \cos \chi) \right)$$

$$C_{\chi}^{\text{cov.layer}} = C_{\chi}^{\text{top film}} \left(\exp\left(-g_2 \sum \mu_i' T_i' / \cos\chi\right) \right) / \left(\exp\left(-2\sum \mu_i' T_i' / \sin\omega\cos\chi\right) \right)$$

Gives access to individual Thicknesses in the refinement

PTC/Pt/TiO₂/SiO₂/Si-(100)

a = 3.955(1) Å

T' = 462(4) Å

 $t'_{iso} = 458(3) \text{ Å}$

 $\epsilon' = 0.0032(1)$

a = 3.945(1) Å c = 4.080(1) Å T = 4080(10) Å t_{iso} = 390(7) Å $\epsilon = 0.0067(1)$

WIMV vs Entropy modified WIMV approach

Better refinement with E-WIMV:

- lower reliability factors (structure and texture)

- better high density level reproduction

Texture	Pt	РТС	Pt	РТС		
	Texture	Texture	RP_0	RP_0	Rw	R_{Bragg}
	Index	Index				
	$(m.r.d.^2)$	$(m.r.d.^2)$	(%)	(%)	(%)	(%)
WIMV	48.1	1.3	18.4	11.4	12.4	7.7
EWIMV	40.8	2	13.7	11.2	7	4.7

Main Collaborators: A. Manceau, B. Lanson: LGIT, Grenoble, France

Amplitude of EXAFS spectra (then RSF): Stern & Heald, 1983 plane-wave approx., single-scattering processes

$$\chi(\vec{k},\theta_{ij}) = \sum_{j} 3\langle \cos^2 \theta_j \rangle \chi_{iso}^j(\vec{k})$$
$$= \sum_{j} \sum_{i=1}^{N_j} 3\langle \cos^2 \theta_{ij} \rangle \chi_{iso}^j(\vec{k})$$

j: nb of neighbouring atomic shell N_j: nb of backscatterers in the jth shell χ_{iso}^{j} taken at magic angle (α =35.3°) for fibre textures

 \Rightarrow P-EXAFS: provides directional structural information

Isotropic powder:
$$\chi(\vec{k}) = \chi(\vec{k}, \theta_{ij}) = \sum_{j} \chi^{j}_{iso}(\vec{k})$$

For fibre texture (around Z): signal averaged on Ω

$$\left\langle \cos^2 \theta_{ij} \right\rangle = \frac{1}{2\pi} \int_0^{2\pi} \cos^2 \theta_{ij} d\Omega = \cos^2 \phi \sin^2 \alpha + \frac{\cos^2 \alpha \sin^2 \phi}{2}$$

which allows to calculate the real number of j^{th} atoms:

$$N_{obs} = 3N_{real} \left[\cos^2 \phi \sin^2 \alpha + \frac{\cos^2 \alpha \sin^2 \phi}{2} \right]$$

N_{obs} / 3 N_{real} correction factor

2 magic angles: $\alpha = 35.3^{\circ}$ $\phi = 54.7^{\circ}$

P-EXAFS of clays

P-EXAFS oscillations of Garfield nontronite

 \mathbf{k} (Å⁻¹)

Texture experiments

Crystal system: a=5.279Å, b=9.14Å, c=12.563Å, b=9.25° OD-MIMA telinement

<001>* fibre, fibre axis \perp film plane

Octahedra flattening angle ψ (*Edge-sharing octahedral structures*)

Some conclusions

- The use of textured self-supporting films allow an extension of the **k** exploitable range of EXAFS spectra, when polarised radiation is used, and their quality
- Texture-corrected spectra permits the determination of the real number of neighbours
- The angular variation of the P-EXAFS spectra can provide the determination of structural distorsions

Main Collaborator: M. Morales: Lab. Cristallographie, Grenoble, France

ErMn₄Fe₈C

magnetic moments in the (a,b) planes

{001} radial distribution: ρ_0 (0.5 mrd) + PV (HWHM = 12°)

Anisotropic magnetisation curves

Model for M_{\perp} :

$$M(H_{meas}) = M_S \cos(\theta_g - \theta)$$

$$\frac{M_{\perp}}{M_{\rm S}} = 2\pi \int_{0}^{\frac{\pi}{2}} (1 - \rho_0) PV(\theta_{\rm g}) \sin\theta_{\rm g} \cos(\theta_{\rm g} - \theta) d\theta_{\rm g} + \rho_0 M_{\rm random}$$

Some conclusions

- This model strongly deviates from reality at fields higher than 1.5 T
- But it takes account of the real (exp. measured) orientation distribution of crystallites, rather than trying to fit it
- Its merit is to separate purely magnetic and crystallographic effects

Reflectivity and Electron Density Profile

Future trends

- Combining with reflectivity measurements: independently measured and refined thicknesses, electron densities and roughnesses
- Adding residual stress determinations
- Multiple Analysis Using Diffraction, a web-based tutorial for the combined approach: search MAUD (Luca Lutterotti)
- Quantitative Texture Analysis Internet Course: http://lpec.univ-lemans.fr/qta(Daniel Chateigner)

Quantitative Texture Analysis Internet Course

http://lpec.univ-lemans.fr/qta