# Combined Analysis: XRD – XRF – Raman within the EU-SOLSA Project

#### D. Chateigner, L. Lutterotti, and the SOLSA Consortium <u>Normandie Université, Universita di Trento</u>

Normandie Université







Crystallography, Roma, Italy, 25-26th Apr. 2019



Rietveld: Acta Cryst. (1967), J. Appl. Cryst (1969) computers, neutrons (Gaussian peaks): powders ! Lutterotti, Matthies, Wenk: Rietveld Texture Analysis, J. Appl. Phys. (1997) classical Rietveld + QTA (WIMV) Morales, Chateigner, Lutterotti, Ricote: Mat. Sci. For. (2002) Rietveld of layers (QTA, QMA) + E-WIMV ESQUI EU FP6 project (ended Jan. 2003) Lutterotti, Chateigner, Ferrari, Ricote: Thin Sol. Films (2004) E-WIMV + RSA + XRR + Geom. Mean: Extended Rietveld

Chateigner, Combined Analysis, Wiley-ISTE (2010)

International Tables Vol H (2019)



Boullay, Lutterotti, Chateigner, Sicard: Acta Cryst A (2014) Electron Diffraction Pattern – 2-waves Blackman correction

## Rietveld: extended to lots of spectra

 $y_{c}(\mathbf{y}_{S},\theta,\eta) = y_{b}(\mathbf{y}_{S},\theta,\eta) + I_{0} \sum_{i=1}^{N_{L}} \sum_{\Phi=1}^{N_{\Phi}} \frac{v_{i\Phi}}{V_{c\Phi}^{2}} \sum_{h} Lp(\theta) j_{\Phi h} |F_{\Phi h}|^{2} \Omega_{\Phi h}(\mathbf{y}_{S},\theta,\eta) P_{\Phi h}(\mathbf{y}_{S},\theta,\eta) A_{i\Phi}(\mathbf{y}_{S},\theta,\eta)$ 

Texture:

$$P_{h}(\mathbf{y}_{S}) = \int_{\widetilde{\varphi}} f(g,\widetilde{\varphi}) d\widetilde{\varphi}$$

E-WIMV, components, Harmonics, Exp. Harmonics ...

Strain-Stress:

$$\left\langle \mathbf{S}\right\rangle_{geo}^{-1} = \left[\prod_{m=1}^{N} \mathbf{S}_{m}^{\nu_{m}}\right]^{-1} = \prod_{m=1}^{N} \mathbf{S}_{m}^{-\nu_{m}} = \prod_{m=1}^{N} \left(\mathbf{S}_{m}^{-1}\right)^{\nu_{m}} = \left\langle \mathbf{S}^{-1}\right\rangle_{geo} = \left\langle \mathbf{C}\right\rangle_{geo}$$

Geometric mean, Voigt, Reuss, Hill ...

Layering:

$$A_{i\Phi} = \frac{v_{i\Phi} \sin \theta_i \sin \theta_o}{\overline{\mu}_i (\sin \theta_i + \sin \theta_o)} \left\{ 1 - e^{-\overline{\mu}_i \tau_i W} \right\} \prod_{k < i} e^{-\overline{\mu}_k \tau_k W}$$
$$W = \frac{1}{\sin \theta_i} + \frac{1}{\sin \theta_o}$$

Stacks, coatings, multilayers ...

## Line Broadening:

Popa, Delft: Crystallite sizes, shapes, microstrains, distributions 0D-3D defects

X-Ray Reflectivity (specular): Matrix, Parrat, DWBA, EDP ... X-Ray Fluorescence/GiXRF: De Boer Electron Diffraction Patterns: 2-waves Blackman

#### Line Broadening: Crystallite sizes, shapes, µstrains, distributions



Texture helps the "real" mean shape determination

 $\left\langle \mathbf{R}_{\vec{\mathbf{h}}}\right\rangle = \sum^{L} \sum^{\ell} \mathbf{R}_{\ell}^{m} \mathbf{K}_{\ell}^{m}(\boldsymbol{\chi},\boldsymbol{\varphi})$ 

 $\ell = 0 m = 0$ 

Symmetrised spherical harmonics

 $K_{\ell}^{m}(\chi,\varphi) = P_{\ell}^{m}(\cos\chi)\cos(m\varphi) + P_{\ell}^{m}(\cos\chi)\sin(m\varphi)$ 

 $<\!\!R_{h}\!\!> = R_{0} + R_{1}P_{2}^{0}(x) + R_{2}P_{2}^{1}(x)\cos\varphi + R_{3}P_{2}^{1}(x)\sin\varphi + R_{4}P_{2}^{2}(x)\cos2\varphi + R_{5}P_{2}^{2}(x)\sin2\varphi + <\!\!<\!\!\epsilon_{h}^{2}\!\!>\!\!E_{h}^{4} = E_{1}h^{4} + E_{2}k^{4} + E_{3}\ell^{4} + 2E_{4}h^{2}k^{2} + 2E_{5}\ell^{2}k^{2} + 2E_{6}h^{2}\ell^{2} + 4E_{7}h^{3}k + 4E_{8}h^{3}\ell + 4E_{9}k^{3}h +$  $4E_{10}k^{3}\ell + 4E_{11}\ell^{3}h + 4E_{12}\ell^{3}k + 4E_{13}h^{2}k\ell + 4E_{14}k^{2}h\ell + 4E_{15}\ell^{2}kh$ 



#### EMT nanocrystalline zeolite



Ng, Chateigner, Valtchev, Mintova: Science 335 (2012) 70

#### New active Li–Mn–O compound for high energy density Li-ion batteries



Rock-salt-type nanostructured material: shows a discharge capacity of <u>355 mAh/g</u>

Freire, Kosovab, Jordy, Chateigner, Lebedev, Maignan, Pralong: Nature Mat. 15 (2016) 173

#### Irradiated FluorApatite (FAp) ceramics

Self-recrystallisation under irradiation, depending on SiO<sub>4</sub> /  $PO_4$  ratio (FAp / Nd-Britholite) and on irradiating species



TEM of FAp irradiated with 70 MeV, 10<sup>12</sup> Kr cm<sup>-2</sup> ions



## texture corrected, 10<sup>13</sup> Kr cm<sup>-2</sup>

# Virgin, with texture correction

## Virgin, no texture correction

| Fluence                  | Vc/V    | А         | с         | <t></t> | $\Delta a/a_0$ | $\Delta c/c_0$ | R <sub>w</sub> | R <sub>B</sub> |  |
|--------------------------|---------|-----------|-----------|---------|----------------|----------------|----------------|----------------|--|
| (ions.cm <sup>-2</sup> ) | (%)     | (Å)       | (Å)       | (nm)    | (%)            | (%)            | (%)            | (%)            |  |
| 0                        | 100     | 9.3365(3) | 6,8560(5) | 294(22) | -              | -              | 14.6           | 9.1            |  |
| Kr                       |         |           |           |         |                |                |                |                |  |
| $10^{11}$ 100            |         |           |           |         |                |                |                |                |  |
| $10^{12}$                | 100     | -         | -         | -       | -              | -              |                |                |  |
| $5.10^{12}$              | 49(1)   | 9.3775(9) | 6.8912(8) | 294(20) | 0.44           | 0.53           | 24             | 15             |  |
| 10 <sup>13</sup>         | 20(1)   | 9.4236(5) | 6.9105(5) | 291(20) | 0.94           | 0.82           | 9.9            | 6              |  |
| $5.10^{13}$              | 14(1)   | 9.3160(4) | 6.8402(5) | 294(22) | -0.21          | -0.22          | 10.5           | 5.9            |  |
| Ι                        |         |           |           |         |                |                |                |                |  |
| $10^{11}$                | -       | -         | -         | -       | -              | -              |                |                |  |
| 5.10 <sup>11</sup>       | 86(2)   | 9.3603(3) | 6.8790(5) | 90(10)  | 0.26           | 0.35           | 23.9           | 15.1           |  |
| 10 <sup>12</sup>         | -       | -         | -         | -       | -              | -              |                |                |  |
| $3.10^{12}$              | 47(2)   | 9.3645(3) | 6.8840(5) | 91(6)   | 0.30           | 0.42           | 13.3           | 9              |  |
| 5.10 <sup>12</sup>       | 29.2(5) | 9.3765(5) | 6.8881(6) | 77(11)  | 0.44           | 0.48           | 10.4           | 7.3            |  |
| 10 <sup>13</sup>         | 13.2(2) | 9.3719(4) | 6.8857(6) | 82(9)   | 0.38           | 0.45           | 6.7            | 4.9            |  |

Single impact model associated to crystal size reduction Cell parameters and volume increase, then relax

Amorphisation / recrystallisation competition: single or double impact

#### Amorphous/crystalline volume fraction (damaged fraction Fd = Va / V) as determined by x-ray diffraction



### Combined Analysis approach



#### Minimum experimental requirements

1D or 2D Detector + 4-circle diffractometer (X-rays and neutrons) CRISMAT, ILL (B. Ouladdiaf, T. Hansen)

~1000 experiments (2θ diagrams) in as many sample orientations

+

Instrument calibration (peaks widths and shapes, misalignments, defocusing ...)





#### 2D Curved Area Position Sensitive Detector



#### D19 - ILL

~100 experiments (2D Debye-Scherrer diagrams) in as many sample orientations





#### Minimum experimental requirements



1D or 2D Detector + 4-circle diffractometer (CRISMAT – ANR EcoCorail)

Heta diagrams)Instrument calibrationrientations+(peaks widths and shapes,<br/>misalignments, defocusing ...)

~1000 experiments (2θ diagrams) in as many sample orientations

#### Independent measurements

Different wavelengths and rays

Reflectivity: thickness, roughness, electron density profiles

X-ray Fluorescence: composition

Spectroscopies: local structures (PDF, FTIR, Mossbauer ...), eventually anisotropic (P-EXAFS, ESR, Raman ...), Element profiles (SIMS, RBS ...) ...

Physical models: magnetisation, conductivity ...

Environments: applied fields

#### **Combined Analysis cost function**

$$WSS = \sum_{t=1}^{N_p} u_t \sum_{i=0}^{N_t} w_{it} (y_{itc} - y_{ito})^2$$

For each pattern t:  $w_{it}$  : weight, usually  $1/y_i = \sigma^2$ .

u<sub>t</sub> : weight of each pattern set t should be used to adjust the importance we want to give to a particular technique or pattern set with respect to the others

### Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub> thermoelectrics

Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub>: Misfit lamellar and modulated Structure, with high thermopower



Two monoclinic sub-systems: 51 with  $a \sim 4.8$ Å,  $b_1 \sim 4.5$ Å,  $c \sim 10.8$ Å et  $\beta \sim 98^{\circ}$  (NaCl-type, 0.03) 52 with  $a \sim 4.8$ Å,  $b_2 \sim 2.8$ Å,  $c \sim 10.8$ Å et  $\beta \sim 98^{\circ}$  (CdI<sub>2-</sub>type)





Magnetic alignment + Templated Growth D. Kenfaui, E. Guilmeau, M. Prevel



- Neutrons @D1B
- 3D Supercell: a=4.8309Å, b~8b1~13b2~36.4902Å, c=10.8353Å, β=98.13° 174 atoms/cell -Sample : 0.6 cm<sup>3</sup>



**Texture** 

- neutrons @D1B
- $\rightarrow$  volume texture
- max. {001} : 42.73 mrd





#### Carbon nanofibre



#### 1 fibre (7 microns diameter): CCD Kappa diffractometer

Planar texture Component Ufer turbostractic model





|      | A(nm)      | C(nm)      | Orientation | Max 001  | Crystallite | Crystallite | Global      |
|------|------------|------------|-------------|----------|-------------|-------------|-------------|
|      |            |            | FWHM(°)     | pole     | size along  | size along  | microstrain |
|      |            |            |             | figure   | c (nm)      | a (nm)      | (rms)       |
|      |            |            |             | (m.r.d.) |             |             |             |
| C1B1 | 0.23589(7) | 0.6821(1)  | 21.6(1)     | 1.95     | 2.1(4)      | 2.2(4)      | 0.0152(10)  |
| C2B1 | 0.23746(5) | 0.68915(8) | 18.75(6)    | 2.05     | 2.3(2)      | 2.5(2)      | 0.0154(11)  |
| C3B1 | 0.23734(5) | 0.69233(9) | 18.63(6)    | 2.04     | 2.4(3)      | 2.7(5)      | 0.0136(6)   |
| C3B2 | 0.23716(4) | 0.69389(9) | 19.87(7)    | 1.98     | 2.4(4)      | 2.5(4)      | 0.0150(4)   |
| C3B3 | 0.23656(4) | 0.68980(8) | 19.16(6)    | 1.99     | 2.5(6)      | 2.3(5)      | 0.0168(8)   |

# Turbostratic phyllosilicate aggregates



## Mg<sub>0.75</sub>Fe<sub>0.25</sub>O high pressure experiments



E-WIMV + geo



a = 3.98639(3) Å <t> = 46.8(3) Å < $\epsilon$ > = 0.00535(1) $\sigma_{33}$  = -861(3) MPa



#### LiNbO<sub>3</sub>

#### - Predict macroscopic anisotropic properties: BAW

Propagation equation

$$\rho \frac{\partial^2 u^i}{\partial t^2} = \left[ \mathbf{C}^{\mathrm{i}\ell \mathrm{mn}} \right] \frac{\partial^2 u_n}{\partial x^m \partial x^\ell}$$



Cubic crystal system

|                                                    | $c_{11} \text{ or } c_{11}^{M}$ | $c_{12} \text{ or } c_{12}^{M}$ | $c_{13} \text{ or } c_{13}^{M}$ | $c_{14} \text{ or } c_{14}^{M}$ | $c_{33} \text{ or } c_{33}^{M}$ | $c_{44} \text{ or } c_{44}^{M}$ |
|----------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Single crystal                                     | 201                             | 54.52                           | 71.43                           | 8.4                             | 246.5                           | 60.55                           |
| LiNbO <sub>3</sub> /Si                             | 206.4                           | 68.5                            | 67.6                            | 0.48                            | 216.5                           | 64                              |
| LiNbO <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub> | 204                             | 65.7                            | 69.7                            | 1.1                             | 219.9                           | 63.2                            |



## **ErMn<sub>3</sub>Fe<sub>9</sub>C ferrimagnet**

#### Predict macroscopic anisotropic properties: Magnetisation

$$\frac{M_{\perp}}{M_{s}} = 2\pi \int_{0}^{\frac{\pi}{2}} (1 - \rho_{0}) PV(\theta_{g}) \sin\theta_{g} \cos(\theta_{g} - \theta) d\theta_{g} + \rho_{0} M_{random}$$



#### max {001}: 3.9 mrd min: 0.5 mrd



### Combined XRR, XRD & GiXRF Analysis



#### XRR













### Combined Measurement-Analysis XRD-XRF-Raman for SOLSA

#### Sequential Acquisition (on-mine real-time) Hyperspectral **XRD** XRF Raman IR 3D imaging 247 m 247.25 m Sonic ID2A and B drilling Distance along section (mm) Conveyor **Open Databases:** Global XRD-XRF-Raman-IR COD **Full-Profile Search-Match** TCOD QPA – chemical analysis ROD ... **Combined Analysis**

or Combined Measurements and Analysis:







XRD-XRF-Raman-FTIR Combined Analysis (SOLSA EU projet)







XRD-XRF-Raman

Comb. Meas.

#### **XRD-XRF-Raman-IR Combined Analysis**



| $\mathbf{COD}$                                                                                                         | Crystallography Open Database                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COD Home<br>Home<br>What's new?<br>Accessing COD Data<br>Browse<br>Search<br>Search<br>Search by structural<br>formula |                                                                                                                                                                                                                                                                                                                                                                                                             |
| Add Vous Doto                                                                                                          | Open-access collection of crystal structures of organic, inorganic, metal-organic compounds and                                                                                                                                                                                                                                                                                                             |
| Deposit your data<br>Manage depositions<br>Manage/release<br>prepublications                                           | Including data and <u>software</u> from <u>CrystalEye</u> , developed by Nick Day at the <u>department of Chemistry</u> , the University of Cambridge under supervision of <u>Peter Murray-Rust</u> .                                                                                                                                                                                                       |
| Documentation                                                                                                          | All data on this site have been placed in the public domain by the contributors.                                                                                                                                                                                                                                                                                                                            |
| COD Wiki<br>Obtaining COD<br>Querying COD<br>Citing COD                                                                | COD Advisory Board thanks <u>The Research Council of Lithuania</u> for their financial support of the publication<br><u>"Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide</u><br><u>collaboration</u> ",<br>Nucleic Acids Research. (2012) <u>PDF version</u><br>We thank Crystal Impact GbP for their financial support of the publication |
| COD Mirrors<br>Advices to donators<br>Useful links                                                                     | " <u>Crystallography Open Database - an open-access collection of crystal structures</u> ",<br>J. Appl. Crystallogr. (2009) <u>PDF version</u>                                                                                                                                                                                                                                                              |
|                                                                                                                        | Currently there are <b>379914</b> entries in the COD.<br>Latest deposited structure: 7228542 on <b>2017-06-26</b> at <b>09:50:13 UTC</b>                                                                                                                                                                                                                                                                    |

> 400,000 entries, fully freely downloadable

Grazulis et al. J. Appl. Cryst 2009

#### solsa.crystallography.net/rod/

#### **Raman Open Database**

Open-access collection of Raman spectra used for the SOLSA H2020 project.

All data on this site have been placed in the public domain by the contributors.

Latest deposited structure: 3500265 on 2018-09-06 at 12:12:46 UTC

#### ROD Home

Home What's new? 🖸

#### Accessing ROD Data Search

\* SOLSA \*

Add Your Data



Currently there are 1099 entries in the ROD.

Deposit your data Manage depositions Manage/release prepublications

#### Advisory Board

Lahfd Abdeltif, Mohamed-Ramzi Ammar, Jean-François Bardeau, Xavier Bourrat, Thanh Bui, Daniel Chateigner, Cédric Duée, Yassine El Mendili, Stephanie Gascoin, Saulius Gražulis, Bernard Hehlen, Marc Jeannin, Arun Kumar, Monique Le Guen, Charles Le Losq, Gino Mariotto, Nicolas Maubec, Andrius Merkys, Beate Orberger, Sébastien Petit, Henry Pilliere, Andrea Sanson, Maria Secchi, Patrick Simon, Adolfo Speghini, Antanas Vaitkus, Marco Zanatta

If you find bugs in the ROD or have any feedback, please contact us at cod-bugs@ibt.lt

#### Acknowledgements

Raman Open Database has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 689868



Currently the database contains 1099 entries in the standard CIF and JCAMP-DX formats with data related to over than 780 different phases

#### COD **←→**ROD



#### ROD ID 1000002 ←→ COD ID 1546383

Y. El Mendili et al., J. Appl. Cryst. 2019

#### **Full-Pattern Search-Match**

#### http://nanoair.dii.unitn.it:8080/sfpm/ cod.iutcaen.unicaen.fr

| Diffraction pattern and sample composition                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upload diffraction pattern: Parcourir                                                                                                                                    |
| Atomic elements in the sample: O AI Ca F Zn                                                                                                                              |
| Sample nanocrystalline                                                                                                                                                   |
| Experiment details<br>Radiation:<br><ul> <li>X-ray tube: Cu ▼</li> <li>Other : x-ray ▼ Wavelength (Å): 1.540598</li> </ul>                                               |
| Instrument geometry:<br><ul> <li>Bragg-Brentano (theta-2theta)</li> <li>Bragg-Brentano (2theta only), omega: 10</li> <li>Debye-Scherrer</li> <li>Transmission</li> </ul> |
| Instrument broadening function: Medium                                                                                                                                   |
| Search and quantify<br>Extra output (for debugging)<br>Structures database: CODstructures 👻                                                                              |

#### 1 min later >275000 COD structures

| Phase ID | name       | vol. (%) | wt. (%) | crystallites (Å) | microstrain |
|----------|------------|----------|---------|------------------|-------------|
| 9004178  | Zincite    | 16.8284  | 23.9708 | 2148.26          | 0.00028435  |
| 9009005  | Fluorite   | 42.5522  | 33.9388 | 2117.08          | 0.000363147 |
| 9007498  | Corundum   | 37.2197  | 37.2493 | 1889.82          | 0.000267779 |
| 2300112  | zinc_oxide | 3.39971  | 4.84114 | 1754.74          | 6.98311e-05 |

#### Final Rietveld analysis, Rw: 0.159468, GofF: 1.95869



Found phases and quantification:



Rutile nanocrystalline Electron Powder Diffraction pattern

Combined Analysis Workshop series: Next one in Caen 1<sup>st</sup> – 6<sup>th</sup> July 2019 <u>www.ecole.ensicaen.fr/~chateign/formation/</u>

## Thanks !





COMBIX: Chair of Excellence



FURNACE DAME ECOCORAIL SEMOME



SMAM