Controlled growth of mollusc shells: Quantitative Crystallographic Texture Analysis input

D. Chateigner

- Laboratoire de Cristallographie et Sciences des Matériaux (CRISMAT)

- Ecole Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)

Overlook

- Generality on QTA by diffraction
- Complex growth of layers: microstructure versus texture
- **a** and **c**-axes patterns of aragonitic layers, twinning
- QTA: global versus local probes
- QTA and Mollusc's Phylogeny
- QTA and calcitic fossils
- QTA and Mollusc's prothaetics
- QTA and mechanical behaviour

We measure pole figures P_{hkl} , statistical representation of crystallite orientation in a sample frame XYZ:

 $\{\alpha,\beta,\gamma\}$ three Euler angles, γ accessed by refinement of the Orientation Distribution Function (ODF)

Reference frame in mollusc shells

 Crystal: CaCO₃, aragonite (Pmcn) or calcite (R3c), for thousands of crystallites:

Typical x-ray diffraction pattern

Mytilus edulis (common mussel)

Crassostrea gigas (common oyster)

Measured for around 1000 sample orientations, using x-rays, neutrons or electrons, depending on the desired probed volume

ODF-reliability (x-rays: point detector): *Helix pomatia* (Burgundy land snail: Outer com. crossed lamellar)

Inner sheet nacre of *Anodonta cygnea* (river mussel): no intra-mineral epitaxy

Bathymodiolus thermophilus (-2400m deep mussel): no inter-mineral epitaxy

Euglandina sp.: different crystallite shapes, close orientations !

Inner sheet nacre of *Cypraea testudinaria* (cowry): no inter-layer epitaxy

Cyclophorus woodianus: different crystal orientations look like single crystal from diffraction !

c-axes texture patterns

a-axes texture patterns

Twinning in aragonite ...

 $\alpha = 2 \arctan(a/b) = 63.8^{\circ}$

... forms nacre platelets ...

Bragg, 1937

Mutvei, 1980

... that rearrange ...

Pinctada margaritifera (black pearl oyster)

Haliotis cracherodi (black abalone)

Neutrons or x-rays: global approach Electrons: local, like with EBSD

Crassostrea gigas (common oyster: Inner foliated calcite) Electrons

x-rays

Global analysis is coherent with local ones like synchrotron microfocus x-rays (*Aizenberg*, J. et al. (1996) Connective Tissue Research **34(4)**, 255-261)

From 70 mollusc species (gastropods, bivalves and cephalopods), around 150 layers studied

In collaboration with C. Hedegaard (*DGB Aarhus, Denmark*) and H.-R. Wenk (DEPS Berkeley, *USA*) Closely related species, close textural characters, but significant variations: textural parameters can serve character analysis

Phylogenic interest: nacre = ancestral (Carter & Clarck, 1985)

nacre not ancestral

In collaboration with L. Harper (*DESC Cambridge, UK*) and M. Morales (*LERMAT-ENSICAEN, France*)

Pinnoid and Pterioid prismatic layers

Pinna nobilis

c-axes // N a-axes at random

Pteria penguin

Mussels prismatic layers

Mytilus edulis c-axes ∠ N a-axes single-crystal like

c-axes $\perp N$, // G Bathymodiolus thermophilus

Scallop and trichite prismatic layers

Amussium parpiraceum (scallop) c-axes ⊥ N, // G a-axes single-crystal like

Trichites (fossil) c-axes ∠ N a-axes random

Texture Analysis results

	Layer	ODF	ODF min	RP0	RP1	c-axis	a-axis	{001} Max	\mathbf{F}^2	- S
	type	Max	(mrd)	(%)	(%)			(mrd)	(mrd ²)	
		(mrd)								
Pinna nobilis	OP	303	0	50	29	// N	random	68	29	2.3
Pteria penguin	OP	84	0	29	15	// N	random	31	13	1.9
Amussium	OP	330	0	53	33	// G	<110>//	20	31	2.6
parpiraceum							М			
Bathymodiolus	OP	63	0	25	18	// G	// M	27	13	1.9
thermophilus										
Mytilus edulis	OP	207	0	41	25	75°	<110>//	23	21	2.2
						from N	М			
Trichites	Р	390	0	52	28	15°	random	56	41	2.2
						from N				
Crassostrea gigas	IF	908	0	45	31	35°	// M	>100	329	5.1
						from N				

No DNA is available on fossils like in Trichites, but Trichite's textural parameters are close to the ones of *pinnoids* or *pterioids*: interesting for the classification of extinct species c

Chateigner, Morales, Harper, Materials Science Forum, 408-412, 2002, 1687-1692

Pinctada margaritifera and P. maxima nacres: Bio-compatible and bio-inductive layers for rabbit bones (E. Lopez (MNHN, Paris)

Bivalvia

P. Margaritifera

	Atrina maurea	$\left< \perp \left \text{ISN} \right \ast_{44}^{\text{a, 20}} \right>$	
	—— Pinna nobilis	$\left< \perp \left \text{ISN} \right \ast^{a,95}_{25} \right>$	
	Lampsilis alatus	$\left< \perp \left \text{ISN} \right \ast^{\text{a},90}_{25} \right>$	
	Fragum fragum	$\langle \forall, 15 \text{ICCL} \times_{50}^{<110>} \rangle$	
	Glycymeris gigantea	$\langle \forall, 15 \text{ICCL} \times_{50}^{<110>} \rangle$	
	Spondylus princeps	$\langle v, 10 ICCL \times_{50}^{<110>}$, -15
	Paphia solanderi	$\left< \perp \text{ICCL} O \right> \left< \angle, 2 \right>$	$20 OSiP O\rangle$
_	Neotrigonia sp.	$\left< \perp \left \text{ISN} \right \ast_{12}^{a,90} \right>$	
	Pinctada margaritifera	$\left< \perp \left \text{ISN} \right \ast_8^{a,90} \right>$	
	Pinctada maxima	$\left< \perp \left \text{ISN} \right \ast_{14}^{\text{a},90} \right>$	
	Pteria penguin	$\left< \perp \left \text{ISN} \right \ast_{15}^{\text{a},-30} \right>$	
			4

C_{ijkl} (Gpa)

P waves

Single crystal (Gpa)

123

151	151		
251	151		
151	251		
		123	
			123
	151 251 151	151151251151151251	151 151 251 151 151 251 123

CoNi alloy

298	127	126	-0.	0.	-2
127	305	118	0.	0.	-1
126	118	307	-0.	-0.	3
-0.	0.	-0	78	2.8	0.
0.	0.	-0	2	85	-0
-2	-1	3	0.	-0.	86

QTA + Simulation Geometric Mean

111

Some conclusions

- Shells exhibit a large variety of texture patterns, in their aragonite and calcite layers
- Textural parameters are similar for close species, different for distant species, they confirm organically driven growth and refute mineral epitaxy
- Texture and microstructure analyses give nonredundant information in shells
- "Texture" characters can be relevant for classification and phylogenetic interpretation, either for living or extinct species
- Texture may serve as a tool to predict bio-compatible species, and mechanical behaviours of shells