<u>Combined Analysis</u>: Texture-structure-microstructure-phase analysis of multi-phased ceramics and films using x-ray and neutron diffraction: examples of sinter-forged Bi2223-Bi2212, Melt Textured Growth Y-Ba-Cu-O and nano-Si

High-Tc Superconductors

nano-Si thin films PCT & PMN-PT Ferroelectrics

Electroceramics X, Toledo 2006

Implemented codes

Texture from Spectra

Residual Stresses and Rietveld

Textured samples: Reuss, Voigt, Hill, Bulk geometric mean approaches

How it works (Combined)

$$I_i^{calc}(\chi,\phi) = \sum_{n=1}^{Nphases} S_n \sum_k L_k \left| F_{k;n} \right|^2 S(2\theta_i - 2\theta_{k;n}) P_{k;n}(\chi,\phi) A + bkg_i$$

<u>Texture</u>

$$P_k(\chi,\phi) = \int_{\varphi} f(g,\varphi) d\varphi$$

from Generalized Spherical Harmonics:

$$P_{k}(\chi,\phi) = \sum_{l=0}^{\infty} \frac{1}{2l+1} \sum_{n=-l}^{l} k_{l}^{n}(\chi,\phi) \sum_{m=-l}^{l} C_{l}^{mn} k_{n}^{*m}(\Theta_{k}\phi_{k})$$

$$f(g) = \sum_{l=0}^{\infty} \sum_{m,n=-l}^{l} C_{l}^{mn} T_{l}^{mn}(g)$$

• from the WIMV (left) iterative process or entropy maximisation (right):

$$f^{n+1}(g) = N_n \frac{f^n(g)f^0(g)}{\left(\prod_{\mathbf{h}=1}^{\mathbf{I}} \prod_{m=1}^{M_{\mathbf{h}}} P_{\mathbf{h}}^n(\mathbf{y})\right)^{\frac{1}{M_{\mathbf{h}}}}}$$

$$f^{n+1}(g) = f^n(g) \prod_{m=1}^{M_{\mathbf{h}}} \left(\frac{P_{\mathbf{h}}(\mathbf{y})}{P_{\mathbf{h}}^n(\mathbf{y})} \right)^{\frac{T_{\mathbf{h}}}{M_{\mathbf{h}}}}$$

Layering

$$C_{\chi}^{\text{top film}} = g_1 (1 - \exp(-\mu T g_2 / \cos \chi)) / (1 - \exp(-2\mu T / \sin \omega \cos \chi))$$

$C_{\chi}^{\text{cov. layer}} = C_{\chi}^{\text{top film}} \left(\exp\left(-g_2 \sum \mu_i' T_i' / \cos\chi\right) \right) / \left(\exp\left(-2\sum \mu_i' T_i' / \sin\omega\cos\chi\right) \right)$

Popa anisotropic shapes & microstrains

$$<\mathbf{R_{h}}>=\mathbf{R_{0}}+\mathbf{R_{1}}\mathbf{P_{2}}^{0}(\mathbf{x})+\mathbf{R_{2}}\mathbf{P_{2}}^{1}(\mathbf{x})\mathbf{cos}^{\varphi}+\mathbf{R_{3}}\mathbf{P_{2}}^{1}(\mathbf{x})\mathbf{sin}^{\varphi}+\mathbf{R_{4}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{cos}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2\varphi}+\mathbf{R_{5}}\mathbf{P_{2}}^{2}(\mathbf{x})\mathbf{sin}^{2}(\mathbf{x})\mathbf{s$$

 $< {}^{\epsilon}_{h}{}^{2} > E_{h}{}^{4} = E_{1}h^{4} + E_{2}k^{4} + E_{3}\ell^{4} + 2E_{4}h^{2}k^{2} + 2E_{5}\ell^{2}k^{2} + 2E_{6}h^{2}\ell^{2} + 4E_{7}h^{3}k + 4E_{8}h^{3}\ell + 4E_{9}k^{3}h + 4E_{10}k^{3}\ell + 4E_{11}\ell^{3}h + 4E_{12}\ell^{3}k + 4E_{13}h^{2}k\ell + 4E_{14}k^{2}h\ell + 4E_{15}\ell^{2}kh + 4E_{15}\ell^{2}kh + 4E_{16}k^{2}h\ell +$

Roughness and/or microabsorption

$$R^{rough}(q_z) = R(q_z) \exp(-q_{z,0}q_{z,1}\sigma^2)$$
$$S_R = 1 - p \exp(-q) + p \exp\left(\frac{-q}{\sin\theta}\right)$$

Low-angles (reflectivity)

high-angle (Suortti)

Specular reflectivity: q = (0,0,z)

• Fresnel:

$$R(\mathbf{q}) = \left| \frac{q_{z} - \sqrt{q_{z}^{2} - q_{c}^{2} + \frac{32i\pi^{2}\beta}{\lambda^{2}}}}{q_{z} + \sqrt{q_{z}^{2} - q_{c}^{2} + \frac{32i\pi^{2}\beta}{\lambda^{2}}}} \right|^{2} \delta q_{x} \delta q$$

• matrix:

$$R^{flat} = \frac{r_{0,1}^2 + r_{1,2}^2 + 2r_{0,1}r_{1,2}\cos 2k_{Z,1}h}{1 + r_{0,1}^2r_{1,2}^2 + 2r_{0,1}r_{1,2}\cos 2k_{Z,1}h}$$

• Born approximation:

$$R(q_z) = r \cdot r^* = R_F(q_z) \left| \frac{1}{\rho_s} \int_{-\infty}^{+\infty} \frac{d\rho(z)}{dz} e^{iq_z z} dz \right|^2$$

Phase

$$W_{\Phi} = \frac{S_{\Phi} Z_{\Phi} M_{\Phi} V_{\Phi}}{\sum_{i=1}^{N_{\Phi}} S_i Z_i M_i V_i}$$

Strain-Stress

$$\varepsilon(\mathbf{X}) = \varepsilon^{\mathrm{I}} + \varepsilon^{\mathrm{II}}(\mathbf{X}) + \varepsilon^{\mathrm{III}}(\mathbf{X})$$

$$\begin{split} \left\langle \varepsilon_{h}(\mathbf{y}) \right\rangle_{V_{d}} &= \frac{1}{V_{d}} \int_{V_{d}} (\varepsilon_{33}^{I} + \varepsilon_{33}^{II} + \varepsilon_{33}^{III}) dV \\ &= (\varepsilon_{11}^{I} \cos^{2} \phi + \varepsilon_{12}^{I} \sin 2\phi + \varepsilon_{22}^{I} \sin^{2} \phi - \varepsilon_{33}^{I}) \sin^{2} \psi + \varepsilon_{33}^{I} + \\ &\quad (\varepsilon_{13}^{I} \cos \phi + \varepsilon_{23}^{I} \sin \phi) \sin 2\psi + \frac{1}{V_{d}} \int_{V_{d}} (\varepsilon_{33}^{IIe} + \varepsilon_{33}^{IIei} + \varepsilon_{33}^{IIpi}) dV \\ &= \frac{\left\langle d(hkl, \phi, \psi) \right\rangle_{V_{d}} - d_{0}(hkl)}{d_{0}(hkl)} \end{split}$$

Isotropic samples: Tri-, bi-, uni-axial stress states

Textured samples: Tri-, bi-, uni- stress states + ODF + SDF + model

$$\langle E(\mathbf{g}) \rangle_{V_d} = \frac{1}{V_d} \int_{V_d} E^{SC}(g) f(g) dg \qquad \Rightarrow \qquad C^{M}_{ijkl} \neq \left(S^{M}_{ijkl} \right)^{-1}$$
$$= \left(\prod_{V_d} E^{SC}(g) f(g) dg \right)^{\frac{1}{V_d}} \qquad \Rightarrow \qquad C^{M}_{ijkl} = \left(S^{M}_{ijkl} \right)^{-1}$$

Reuss, Voigt, Hill

Minimum experimental requirements

1D or 2D Detector + 4-circle diffractometer (X-rays and neutrons) CRISMAT, ILL

~1000 experiments (2θ diagrams) in as many sample orientations

+

Instrument calibration (peaks widths and shapes, misalignments, defocusing ...)

Calibration

KCl, $LaB_6 \dots$

FWHM ($\omega, \chi, 2\theta \dots$) 2 θ shift gaussianity asymmetry misalignments ...

Methodology implementation

🔹 Help			Sat 11:06 AM 🔋	🥝 🔳 🔇						
	MAUD	TreeTo	able	ĽE	I Interatti Trento					
2 🗳 🍙 🖪		Name	Value Er	or Status						
JInstruments Data sets	Phases Samples	1_atom_site_aniso_U_12 atom_site_aniso_U_13 atom_site_aniso_U_22	2 0.0 0.0 3 0.0 0.0 2 0.0 0.0	Fixed Fixed Refined						
	(NKI) HST	atom_site_aniso_U_23	3 0.0 0.0	Equal to						
<u>итрег п к і ти</u>	2.02671886 850	↓ [_atom_site_amso_0_33		-	TL	cor friendly interface				
2 0 0 6	1.43310665 850	Cell_length_a	3.614566 0.00	002 Refined 💌	U	ser menury interface				
2 1 1 24	1.17012668 850	6268202548 0.00260264014								
3 1 0 24	1.01333943 830.	Refinement wizard								
2 2 2 8	Refine		Special							
Pole Figure plot	O Background and scale	e parameters Custom	🔾 Qua	ntitative analysis						
Reconstructed	O Previous + basic phas	e parameters Custom	O Crys	tal structure and						
Experimental O	O Previous + microstruc	cture parameters Custom	ᡩ Help			Sat 10:35 AM 🔋 🥥 📰 🔇				
				MAUD		🗆 Microstructure 🛛 🗉 🖻				
	O Previous + crystal str	ucture parameters Custom	ത്ത			Line Broadening				
	○ All narameters for te	exture Custom		Bhase id:	• \v202	Line Broadening model: Delf				
	g nil parameters for te			rnase na.	. 1203	Size-Strain model Popa LB				
	Commands		Symmetry:	cubic	÷	Distributions				
	Fix all parameters	Free all parameters Free b	ac Convention	Hermann-Mauauin	Atoms-	Antiphase boundary model: none abm 🜩 Options				
	Free basic pars	Bound B factors Free m	icr sugar aroun.		Site Ial	Planar defects model: none nd 🚖 Ontions				
					- Y1					
		Go! Set po	ard Z:	1		Microabsorption correction Viceous Close				
			Cell parame	ter Microstruct	turi	Grain size (microns): 5				
			Texture	Micromech	ani	w cuncer				
			📔 Site posit	ions 🛛 🗧 (hkl) li	ist					
			(nystal)	mit Cell m	nit					
	4		Cryster			I T VYYY (YVY) Y VYY I VYY VYY I VYYY I VYYY Y VYY				
Java	a codes					0.0.0 0.0 0 0.0 0.0				
-	1			1						
Java	a web start	updates				130.0 140.0 2. Theta [degrees]				
			لعالب أبرأ	uuuuuuu	Munuh	Unity Multi uniter the Malline or sample: CPD-Y203				
				50.0		100.0 150.0 utation				
			ា		2-Theta [degree	8				

Bi2223 compounds E. Guilmeau, CRISMAT

Grain alignment \Rightarrow / Jc

(00 ℓ) Texture

Combined Analysis

-Neutrons -Sample: ~70 mm³ -2 θ patterns for χ =0° to 90° -No ϕ rotation (fibre texture).

Rw=9.12 RP=16.24

Stacking faults and/or intergrowth on the c-axis \rightarrow New periodicities and peaks characterized with intermediate c parameters.

However, no algorithm is included to solve intergrowths in the combined approach.

Logarithmic density scale, equal area projection

Effect of the sinter-forging treatment on the texture development, crystal growth, transport properties

Sinter- forging dwell time (h)	Orientation Distribution Max (m.r.d.)		% Bi2223	Cell para	ameters (Å)	Crystallite size Bi2223	Rb	Rw (%)	Rexp	RP0	RP1	
	Bi2212	Bi2223		Bi2223	Bi2212	(nm)	(70)	(70)	(70)	(70)	(/0)	(20011-)
20	21.8	20.7	59.9±1.3	a=5.419(3) b=5.391(3) c=37.168(3)	a=5.414(3) b=5.393(3) c=30.800(3)	205±7	7.56	11.1	4.55	17.74	10.56	12500
50	24.1	24.4	72.9±2.9	a=5.419(3) b=5.408(3) c=37.192(3)	a=5.416(3) b=5.396(3) c=30.806(3)	273±10	7.54	11.37	4.58	17.05	11.04	15000
100	31.5	25.2	84.4±4.6	a=5.410(3) b=5.405(3) c=37.144(3)	a=5.412(3) b=5.403(3) c=30.752(3)	303±10	5.4	8.04	3.69	13.54	9.31	19000
150	65.4	27.2	87.0±4.1	a=5.417(3) b=5.403(3) c=37.199(3)	a=5.413(3) b=5.407(3) c=30.792(3)	383±13	6.13	9.12	4.8	16.24	12.25	20000

YBa₂Cu₃O_{7+d} compounds D. Grossin, S. Meslin, CRISMAT

MTG, TSMTG, infiltrated/perforated and foams

Infiltrated Polyurethane foam, annealed

Perforated

TSMTG

Mixtures of YBa2Cu3O7 superconducting and Y2BaCuO5 insulating (needed for vortex pinning)

 $R_w = 5.43\%$, $R_{Bragg} = 19.71\%$

Neutron pole figures (D1B-ILL) and trapped flux

Levitation force

Models ?

- Small g variation inside on twinned domain: large Jc's

- large ϕ_1 variations at twin boundaries: Twist boundaries

- but small Φ variations: small tilt boundaries: large Jc's too

Si nanocrystalline thin films M. Morales, SIFCOM-Caen

Silicon thin films deposition by reactive magnetron sputtering: bower density 2W/cm² 4 total pressure: $p_{total} = 10^{-1}$ Torr \clubsuit plasma mixture: H₂ / Ar, pH₂ / p_{total} = 80 % 🗞 temperature: 200°C \$ substrates: amorphous SiO₂ (a-SiO₂) (100)-Si single-crystals target-substrate distance (d) • $a-SiO_2$ substrates: d = 4, 6, 7, 8, 10, 12 cm films A, B, C, D, E, F • (100)-Si: d = 6, 12 cmfilms G, H

Aim: quantum confinement, photoluminescence properties

Typical refinement

broad, anisotropic diffracted lines, textured samples

Refinement Results

			RX	Anisotropic sizes (Å)			T	Reliability factors (%)					
Sample	d (cm)	a (Å)	thickness				Maximum	minimum	Texture index	RP ₀	R _w	R _B	R _{exp}
			(nm)	<111>	<220>	<311>	(m.r.d.)	(m.r.d.)	F ² (m.r.d ²)				
Α	4	5.4466 (3)		94	20	27	1.95	0.4	1.12	1.72	4.0	3.7	3.5
В	6	5.4439 (2)	711 (50)	101	20	22	1.39	0.79	1.01	0.71	4.9	4.3	4.2
С	7	5.4346 (4)	519 (60)	99	40	52	1.72	0.66	1.05	0.78	4.3	4.0	3.9
D	8	5.4461 (2)	1447 (66)	100	22	33	1.57	0.63	1.04	0.90	5.5	4.6	4.5
E	10	5.4462 (2)	1360 (80)	98	20	25	1.22	0.82	1.01	0.56	5.0	3.9	4.0
F	12	5.4452 (3)	1110 (57)	85	22	26	1.59	0.45	1.05	1.08	4.2	3.5	3.7
G	6	5.4387 (3)	1307 (50)	89	22	28	1.84	0.71	1.01	1.57	5.2	4.7	4.2
Н	12	5.4434 (2)	1214 (18)	88	22	24	2.77	0.50	1.12	2.97	5.0	4.5	4.3

Mean anisotropic shape

Schematic of the mean crystallite shape for Sample D represented in a cubic cell, as refined using the Popa approach and exhibiting a strong elongation along <111>, and TEM image

XRR: Roughness governed

AFM: homogeneous roughness

Conclusions

- a) Texture affects phase ratio and structure determination
- b) Microstructure (crystallite size) affects texture (go to a)
- c) Stresses shift peaks then affects structure and texture determination
- d) Combined analysis may be a solution, unless you can destroy your sample or are not interested in macroscopic anisotropy ...
- e) If you think you can destroy it, perhaps think twice
- f) more information is always needed: local probes ...
- g) www.ecole.ensicaen.fr/~chateign/texture/combined.pdf