Combined texture-structure-microstructure-phase analysis of multiphased bulks and thin films using x-ray and neutron diffraction: some case studies, Bi2223, Ca3Co4O9, PCT and nano-Si.

> CRISMAT-ENSICAEN (Caen-France) SIFCOM-ENSICAEN (Caen-France) AIST (Osaka-Japan) DMF-ICMM (Madrid-España) ILL (Grenoble-France) DIM (Trento-Italia)

Ca₃Co₄O₉ Thermoelectrics

Bi2223

Superconductors

PCT Ferroelectrics Nano-Si thin films

Chinese-French Lab Symposium 2004

Implemented codes

Texture from Spectra

Residual Stresses and Rietveld

Textured samples: Reuss, Voigt, Hill, Bulk geometric mean approaches

How it works (Combined)

$$I_i^{calc}(\chi,\phi) = \sum_{n=1}^{Nphases} S_n \sum_k L_k \left| F_{k;n} \right|^2 S(2\theta_i - 2\theta_{k;n}) P_{k;n}(\chi,\phi) A + bkg_i$$

Texture

$$P_k(\chi,\phi) = \int_{\varphi} f(g,\varphi) d\varphi$$

• from Generalized Spherical Harmonics:

$$P_{k}(\chi,\phi) = \sum_{l=0}^{\infty} \frac{1}{2l+1} \sum_{n=-l}^{l} k_{l}^{n}(\chi,\phi) \sum_{m=-l}^{l} C_{l}^{mn} k_{n}^{*m}(\Theta_{k}\phi_{k})$$

$$f(g) = \sum_{l=0}^{\infty} \sum_{m,n=-l}^{l} C_{l}^{mn} T_{l}^{mn}(g)$$

• from the WIMV iterative process:

$$f^{n+1}(g) = N \left[\frac{f^n(g) f^0(g)}{\prod_{hkl} \left(P_{hkl}^n(\vec{y}) \right)^{\underline{l}}} \right]$$

Layering

$$C_{\chi}^{\text{top film}} = g_1 (1 - \exp(-\mu T g_2 / \cos \chi)) / (1 - \exp(-2\mu T / \sin \omega \cos \chi))$$

$C_{\chi}^{\text{cov.layer}} = C_{\chi}^{\text{top film}} \left(\exp\left(-g_2 \sum \mu_i' T_i' / \cos\chi\right) \right) / \left(\exp\left(-2\sum \mu_i' T_i' / \sin\omega\cos\chi\right) \right)$

DWBA

$$R(q_z) = \left| \frac{1}{\rho_{\infty}} \int_{-\infty}^{\infty} \frac{d\rho}{dz} e^{-iq_z z} dz \right|^2$$

Popa anisotropic shapes

 $<\!\!R_{h}\!\!> = R_{0} + R_{1}P_{2}^{0}(x) + R_{2}P_{2}^{1}(x)\cos\varphi + R_{3}P_{2}^{1}(x)\sin\varphi + R_{4}P_{2}^{2}(x)\cos2\varphi + R_{5}P_{2}^{2}(x)\sin2\varphi + R_{$

Minimum experimental requirements

Curved Detector + 4-circle diffractometer (X-rays and neutrons) CRISMAT, ILL

~1000 experiments (2θ diagrams) in as many sample orientations

+

Instrument calibration (peaks widths and shapes, misalignments, defocusing ...)

Methodology implementation

🔹 Help		Sat 11:06 AM 🔋 🛷	3		
MAUD	🗆 TreeTab	ne	EE		
	Name	Value Error	Status		
(Instruments) (Data sets) (Phases) (Samules)	atom_site_aniso_U_12	0.0 0.0	Fixed		
(kk) list	atom_site_aniso_U_22	0.0 0.0	Refined	I J	ser friendly interface
(IKI) ISL	l 1_atom_site_aniso_U_23 1 atom_site_aniso_U_23	0.0 0.0	Equal to		ser menary meenaee
1 1 0 12 2.02671886 850	v 🕅 Copper		-		
2 0 0 6 1.43310665 850	Cell_length_a	3.614566 0.00002	Refined <		
2 1 1 24 1.17012668 B50	6268202548 0.00260264014				
3 1 0 24	Refinement wizard	<u> </u>			
2 2 2 B		Special			
3 2 1 48 C Rackayound and scal	a nonomatars Custom	O Quantita	rtive analysis		
	e parameters	G Queinere			
Previous + basic phas	e parameters Custom				
		Crystal s	tructure and		
Experimental 🕜 🖓 O Previous + microstruc	cture parameters Custom	🔹 Help			Sat 10:35 AM 🔋 🛷 🗮 🦓
			MAUD		🗆 Microstructure 🛛 🗉 🖻
O Previous + crystal str	ucture parameters <u>Custom</u>	l mimi-			Line Broadening
	where Custom				Line Broadening model: Delf Options
G An parameters for te	kture custom		Phase 1d: 1203		Popa LB T
Commands		Symmetry: Cul	nic 🔺	1	Distributions
Fix all parameters	Free all parameters Free ba			Atoms-	Antiphase boundary model: none abm 🜩 Options
Eree basic name	Bound B factors Frag mic	Convention: Hei	mann-мauguin 🔶		
Tree Dusic purs		Space group: Ia-	3 🗘	Site Ial	Planar defects model: none pd 🗢 Options
	📲 Go! Set par	aZ: 1			Microabsorption correction
		Cell parameter	Microstructur		Grain size (microns): 5
					dancel
		Texture	Micromechani		
		🕅 Site positions	🕅 (hki) list		
		💿 Crystal unit	💿 Cell unit		ן בארא אנג אנג אנג אנג אנג אנג אנג אנג אנג אנ
Java codes					AND
Java Coucs					
Iovo web start	undates				
Java web start	upuales				2-Theta [degrees]
			يتبلب البالليا بالا		to be this to a short the first of the second s
					WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
			50.0	nota [close ~	100.0 150.0 putation

Grain alignment \Rightarrow / Jc

(00 ℓ) Texture

Combined Analysis

-Neutrons -Sample: ~70 mm³ -2 θ patterns for χ =0° to 90° -No ϕ rotation (fibre texture).

Rw=9.12 RP=16.24

Stacking faults and/or intergrowth on the c-axis \rightarrow New periodicities and peaks characterized with intermediate c parameters.

However, no algorithm is included to solve intergrowths in the combined approach.

Logarithmic density scale, equal area projection

Effect of the sinter-forging treatment on the texture development, crystal growth, transport properties

Sinter- forging dwell	Orientation Distribution Max (m.r.d.)		% Bi2223	Cell parameters (Å)		Crystallite size Bi2223	Rb	Rw	Rexp	RP0	RP1	J _c
time (h)	Bi2212	Bi2223		Bi2223	Bi2212	(nm)	(70)	(70)	(70)	(70)	(70)	(A/CIII-)
20	21.8	20.7	59.9±1.3	a=5.419(3) b=5.391(3) c=37.168(3)	a=5.414(3) b=5.393(3) c=30.800(3)	205±7	7.56	11.1	4.55	17.74	10.56	12500
50	24.1	24.4	72.9±2.9	a=5.419(3)a=5.416(3)b=5.408(3)b=5.396(3)c=37.192(3)c=30.806(3)		273±10	7.54	11.37	4.58	17.05	11.04	15000
100	31.5	25.2	84.4±4.6	a=5.410(3) b=5.405(3) c=37.144(3)	a=5.412(3) b=5.403(3) c=30.752(3)	303±10	5.4	8.04	3.69	13.54	9.31	19000
150	65.4	27.2	87.0±4.1	a=5.417(3) b=5.403(3) c=37.199(3)	a=5.413(3) b=5.407(3) c=30.792(3)	383±13	6.13	9.12	4.8	16.24	12.25	20000

Ca₃Co₄O₉ thermoelectrics

Ca₃Co₄O₉: Misfit lamellar and modulated Structure, with high thermopower

Two monoclinic sub-systems: S1 with a ~ 4.8Å, $b_1 \sim 4.5Å$, $c \sim 10.8Å$ et $\beta \sim 98^{\circ}$ (NaCl-type) S2 with a ~ 4.8Å, $b_2 \sim 2.8Å$, $c \sim 10.8Å$ et $\beta \sim 98^{\circ}$ (CdI₂₋type)

Magnetic alignment and Templated Growth method

Analysis:

- neutrons

- 3D Supercell: a=4.8309Å, $b\sim8b1\sim13b2\sim36.4902$ Å, c=10.8353Å, $\beta=98.13^{\circ}$

- 174 atoms/cell
- -*Sample* : 0.6 cm³

RP=19.7%, Rw=11.9%

Magnetic Alignment

 magnetic alignment really efficient to obtain strong textures
combined analysis of modulated structures possible

Ferroelectric PCT films

thin films:

 $(Ca_{0.24}Pb_{0.76})TiO_3$ sol-gel synthesised solutions deposited by spin coating on a substrate of Pt/TiO₂/Si, with and without a treatment at 650°C for 30 min.

All films are crystallised at 700°C for 50 s by Rapid Thermal Processing (RTP; 30°C/s). A series is also recrystallised at 650°C for 1 to 3 h.

Limitations of the simple Quantitative Texture Analysis

Structural parameters are difficult to obtain due to:

a = 3.955(1) Å T = 462(4) Å $t_{iso} = 458(3)$ Å $\epsilon' = 0.0032(1)$ rms a = 3.945(1) Å c = 4.080(1) Å T = 4080(10) Å t_{iso} = 390(7) Å ϵ = 0.0067(1) rms

 R_{W} = 13%; R_{B} = 12%; R_{exp} = 22%.(Rietveld) R_{W} = 5%; R_{B} = 6% (E-WIMV)

Atom	Occupancy	Х	У	Z
Pb	0.76	0.0	0.0	0.0
Ca	0.24	0.0	0.0	0.0
Ti	1.0	0.5	0.5	0.477(2)
O1	1.0	0.5	0.5	0.060(2)
02	1.0	0.0	0.5	0.631(1)

Structural parameters

Pt layer		a (Å)	thickness (nm)	R factors (%)
non-treated su Pt	ubstrate	3.9108(1)	45.7(3)	R _w =13, R _B =12, R _{exp} =22
annealed sub	strate	3 9100(4)	A6 A(3)	P = 8 P = 14 P = -21
Pt (Recryst.	1h)	3.9114(2)	47.8(3)	$R_W = 0, R_B = 14, R_{exp} = 21$ $R_W = 9, R_B = 20, R_{exp} = 21$
Pt (Recryst.	2h)	3.9068(1)	46.9(3)	R_{W} =9, R_{B} =14, R_{exp} =22
Pt (Recryst.	3h)	3.9141(4)	47.5(9)	R_{W} =27, R_{B} =12, R_{exp} =21

Annealing of the substrate does not introduce significant variations on the structure of the Pt layer

PTC film	a (Å)	c (Å) th	ickness (nm)
on non-treated substrate PCT on annealed substrate	3.9156(1)	4.0497(6)	272.5(13)
PCT	3.8920(6)	4.0187(8)	279.0(9)
PCT (Recryst. 1h)	3.8929(2)	4.0230(4)	266.1(11)
PCT (Recryst. 2h)	3.8982(2)	4.0227(4)	258.4(9)
PCT (Recryst. 3h)	3.9001(4)	4.0228(11)	253.6(29)

Recrystallisation reduces the stress on the film, and, increases the lattice parameters

Structural, microstructural and texture quantitative characterisation of ferroelectric thin films by the combined method

 $R_{W} = 13\%; R_{B} = 12\%; R_{exp} = 22\%.$ (Rietveld) $R_{W} = 5\%; R_{B} = 6\%$ (E-WIMV)

Substrate influence on Residual Stress and Texture

Si nanocrystalline thin films

Silicon thin films deposition by reactive magnetron sputtering: bower density 2W/cm² 4 total pressure: $p_{total} = 10^{-1}$ Torr \clubsuit plasma mixture: H₂ / Ar, pH₂ / p_{total} = 80 % 🗞 temperature: 200°C \$ substrates: amorphous SiO₂ (a-SiO₂) (100)-Si single-crystals target-substrate distance (d) • $a-SiO_2$ substrates: d = 4, 6, 7, 8, 10, 12 cm films A, B, C, D, E, F • (100)-Si: d = 6, 12 cmfilms G, H

Aim: quantum confinement, photoluminescence properties

Typical refinement

broad, anisotropic diffracted lines, textured samples

Refinement Results

			RX	Anisot	tropic si	zes (Å)	T	Texture parameters				Reliability factors (%)			
Sample	d (cm)	a (Å)	thickness				Maximum	minimum	Texture index	RP ₀	R _w	R _B	R _{exp}		
			(nm)	<111>	<220>	<311>	(m.r.d.)	(m.r.d.)	F ² (m.r.d ²)						
Α	4	5.4466 (3)		94	20	27	1.95	0.4	1.12	1.72	4.0	3.7	3.5		
В	6	5.4439 (2)	711 (50)	101	20	22	1.39	0.79	1.01	0.71	4.9	4.3	4.2		
С	7	5.4346 (4)	519 (60)	99	40	52	1.72	0.66	1.05	0.78	4.3	4.0	3.9		
D	8	5.4461 (2)	1447 (66)	100	22	33	1.57	0.63	1.04	0.90	5.5	4.6	4.5		
E	10	5.4462 (2)	1360 (80)	98	20	25	1.22	0.82	1.01	0.56	5.0	3.9	4.0		
F	12	5.4452 (3)	1110 (57)	85	22	26	1.59	0.45	1.05	1.08	4.2	3.5	3.7		
G	6	5.4387 (3)	1307 (50)	89	22	28	1.84	0.71	1.01	1.57	5.2	4.7	4.2		
Н	12	5.4434 (2)	1214 (18)	88	22	24	2.77	0.50	1.12	2.97	5.0	4.5	4.3		

Mean anisotropic shape

Schematic of the mean crystallite shape for Sample D represented in a cubic cell, as refined using the Popa approach and exhibiting a strong elongation along <111> (see Table).

Conclusions

a) Texture affects phase ratio and structure determination (kept fixed)

b) Microstructure (crystallite size) affects texture (go to a)

c) Stresses shift peaks then affects structure and texture determination

d) Combined analysis may be a solution, unless you can destroy your sample or are not interested in macroscopic anisotropy ...

e) If you think you can destroy it, perhaps think twice

f) more information is always needed: local probes ...

g) www.ensicaen.ismra.fr/~chateign/texture/combined.pdf