Levitation force to Texture correlation in bulk Y-Ba-Cu-O

D. Chateigner, J. Ricote

LPEC (Le Mans, France)

X. Chaud

CRETA, CNRS (Grenoble, France)

C. Leblond, I. Monot

CRISMAT-ISMRA (Caen, France)

Summary

- Introduction
- Samples and texture experiments
- Levitation curves
- Neutron results for both phases
- $YBa_2Cu_3O_{7-\delta}$ to Y_2BaCuO_5 texture relationship
- Levitation force to texture correlation
- Conclusion

Introduction

- $YBa_2Cu_3O_{7-\delta}$ relatively easy to synthesise
- Tc \approx 92K and relatively high Hc₂ \approx 30-100T
- Low $Hc_1 \approx 0.1T$ \Rightarrow flux penetration \Rightarrow vortex

pinning necessary

• Strong anisotropy: $Jc_{ab}(4.2K,0T) \approx 3.10^{6} A/cm^{2}$ $Jc_{c}(4.2K,0T) \approx$ $2.10^{5} A/cm^{2}$ \Rightarrow texture

necessary

• Application: magnetic bearings

Why textured samples ?

Which goals ?

Test top-seeding technique with:
H or not ?
VT or not ?

- Are '123' and '211' textures correlated ?

- Influence on levitation ?

Elaboration

Elaboration

With "top-seeding" SmBa₂Cu₃O₇ control: **ab**-axes alignment

Samples

8 x 8 x 8 mm cubes: - SHT: seed + H + ∇ T a: center b: edge c: growth line - ST: seed + ∇T a: center b: edge c: growth line - S: only seed a: center c: growth line

- '123': YBa₂Cu₃O_{7-δ} superconductor (Pmmm): a=3.813Å, b=3.881Å, c=11.66Å
- '211': Y₂BaCuO₅ insulator (25%) (Pnma), a=12.181 Å, b=5.658 Å, c=7.132 Å
- Sample: triclinic (WIMV)

Typical magnetisation curves (Y1a)

- Indicates strong preferred orientation
- Largest vertical force achieved for c-axes aligned with H (current flows within the (a,b) planes)

Levitation force measurements

Levitation curves

SHT sample

Neutron texture experiments

D1B line at ILL: Eulerian cradle + PSD (λ = 2.523 Å)

 $-\omega = 30^{\circ}, 0 \le \chi \le 90^{\circ}, 0 \le \varphi \le 355^{\circ}, 5^{\circ} \ge 5^{\circ}$ grid, 15sec/point '123' phase: {112} full coverage $\{101/011\}$ and $\{102/012\}$ 10° blind area tetragonal-like reflections, non '211' perturbated '211' phase: $\{101\}$ 5° blind area $\{201\}$ and $\{111\}$ full coverage non '123' perturbated

- cyclic line profile integration

OD-reliability: '123' phase sample SHTa (centre, with seed, H=8T and ∇T)

φ -scan at the maximum of $\{112\}_{123}$.

OD-reliability: '211' phase

'123' phase: {001} and {100} recalculated pole figures

'123' phase textures

Very high (at the limit of the program: 1° x 1° x 1° grid ?)

- ✤ In general:• c-axes aligned with H,
 - **a,b**-axes aligned with ∇T ,
 - alignment coherent with seed alignment up to 20mm away
 - texture strength remains constant along the seed growth lines

✤ But:

- Texture ameliorates with the suppression of ${\bf H}$

⇒ ∇H_{radial} perturbation (SHTb), diminishes texture, can split c-axis components

• Texture ameliorates at a large scale without ∇T ! (S vs ST)

* Texture perturbations occur outside the seed growth lines, where the seed lost control

'211' phase: {001} and {010} recalculated pole figures

'211' to '123' texture relationship

* '211' phase exhibits very low textures compared to '123'

- The '211' growth is influenced by:
 - Heteroepitaxial-like relationship:

 c_{211} // c_{123} and b_{211} // <110/103/013>₁₂₃

 $\{010\}_{Y211}$ and $\{110\}_{Y123}$ d-spacing: relative mismatch of only 4%.

- with H (SHT), '123' texture \mathbf{v} with the one of '211'

- coherent with D. Chateigner et al. (J. Appl. Cryst. 30, 1997, 43)

L. Durand et al. (Super. Sci. Tech. 8, 1995, 214)

• **H**: in a polymer, '211' orients with $\mathbf{c} // \mathbf{H}$

but here, epitaxy with '123' predominates (SHT)

• ∇T : without ∇T (S), '211' texture is decreased compared with ST

Levitation force to Texture correlation

Conclusions

- '211' and '123' phases textures are linked by heteroepitaxial-like relationship
 - c_{211} // c_{123} and b_{211} // <110>₁₂₃
 - provided by peritectic recombination
- There is a quantitative relation between Levitation Force and texture strength. Fz vs S correlation is quite linear

Entropy or Texture Index ?

Acknowledgement

- J.-L. Soubeyroux, Lab. Cristallographie & D1B local contact, ILL (Grenoble, France)

- P. Gautier-Picart, CRETA-CNRS Grenoble