

Quantitative

D. Chateigner

CRISMAT-ENSICAEN; IUT-UCBN 6 bd. M. Juin 14050 Caen

« classical texture analysis » (Google)

Journée Inauguration plateforme RX Université Paris-Diderot, 3rd April 2014

Crystallographic texture

Diffraction Measurements S space, I(χ,φ,ω,η,2θ)

Corrections (defocusing, localization, Volume-absorption)

> Normalization P_h(y)

Pole figures Y space, I_h(y) Orientation Distribution Function G space, f(g)

Macroscopic anisotropic properties (C_{ijkl}, σ_{ij}, d_{ijk} ...)_M Elastic wave velocities (geophysics) Anisotropic spectroscopies (P-EXAFS, ESR ...) Character analyses (phylogeny, palaeontology) Art and Cultural Heritage

One crystallite oriented in the <u>Pole sphere</u>:

Lambert projections (equal area)

5° x 5° grid: 1368 points

Pole figures

{hk ℓ }-Pole figure: location of distribution densities, for the {hk ℓ } diffracting plane, defined in the crystallite frame K_B, relative to the sample frame K_A.

Pole figures space: \mathbb{X} , with $\mathbf{y} = (\vartheta_y, \varphi_y) = [hk\ell]^*$

<u>Direct Pole Figure</u>: built on diffracted intensities $I_h(y)$, $h = \langle hk \ell \rangle^*$ <u>Normalised Pole Figure</u>: built on distribution densities $P_h(y)$

Density unit: the "multiple of a random distribution", or "m.r.d."

Usual pole figure frames K_A

Normalisation

 Only valid for complete pole figures: neutrons in symmetric geometry
 Needs a refinement strategy to get I^{random} for all h's

Incompleteness and corrections of pole figures

Missing Bragg peaks Absorption + volume Defocusing (x-rays)

Defocusing (χ)

Texture types

Random texture

3 degrees of freedom All P_h(**y**) homogeneous 1 m.r.d. density whatever **y**

Planar texture

2 degrees of freedom1 [hkℓ] at random in a plane

Fibre texture

1 degree of freedom
 1 [hkℓ] along 1 y direction

Cyclic-Fibre texture

c // Z_A

Cyclic-Planar texture

 \mathbf{c} // (X_A,Y_A)

Single crystal-like texture

0 degree of freedom2 [hkℓ]'s along 2 y directions

Single-crystal and perfect 3D orientation not distinguished

Pole figure and Orientation spaces

Pole figure expression:

$$\frac{\mathrm{dV}(\mathbf{y})}{\mathrm{V}} = \frac{1}{4\pi} \mathbf{P}_{\mathbf{h}}(\mathbf{y}) \, \mathbf{dy}$$

 $dy = \sin \vartheta_y \, d\vartheta_y \, d\varphi_y$

$$\int_{\varphi_y=0}^{2\pi} \int_{\vartheta_y=0}^{\pi/2} \mathbf{P}_{\mathbf{h}}(\vartheta_y,\varphi_y) \sin \vartheta_y \, \mathrm{d}\vartheta_y \mathrm{d}\varphi_y = 4\pi$$

Orientation Distribution Function f(g):

$$\frac{\mathrm{dV}(\mathrm{g})}{\mathrm{V}} = \frac{1}{8\pi^2} f(\mathrm{g}) \,\mathrm{dg}$$

$$dg = sin(\beta)d\beta d\alpha d\gamma$$

$$\int_{\alpha=0}^{2\pi} \int_{\beta=0}^{\pi/2} \int_{\gamma=0}^{2\pi} f(g) \, \mathrm{d}g = 8\pi^2$$

From Pole figures to the ODF

Pole figure: one direction fixed in K_A

Orientation: two directions fixed in K_A

Fundamental Equation of QTA

$$P_{h}(\mathbf{y}) = \frac{1}{2\pi} \int_{h/y} f(g) d\widetilde{\varphi}$$

Needs several pole figures to construct f(g)

ODF refinement

One has to invert:

$$P_{h}(\mathbf{y}) = \frac{1}{2\pi} \int_{h//y} f(g) \, \mathrm{d}\widetilde{\varphi}$$

• from Generalized Spherical Harmonics (Bunge):

$$f(g) = \sum_{l=0}^{\infty} \sum_{m,n=-l}^{l} C_{l}^{mn} T_{l}^{mn}(g)$$

$$P_{\mathbf{h}}(\mathbf{y}) = \sum_{l=0}^{\infty} \frac{1}{2l+1} \sum_{n=-l}^{l} k_{l}^{n}(\mathbf{y}) \sum_{m=-l}^{l} C_{l}^{mn} k_{n}^{*m} (\Theta_{\mathbf{h}} \phi_{\mathbf{h}})$$

Least-squares Refinement procedure

$$\sum_{\mathbf{h}} \sum_{\mathbf{y}} \left[I_{\mathbf{h}}(\mathbf{y}) - N_{\mathbf{h}} P_{\mathbf{h}}(\mathbf{y}) \right]^2 d\mathbf{y}$$

But even orders are the only available parts:

$$f^{e}(g) = \sum_{\lambda=0(2)}^{\infty} \sum_{m,n=-\lambda}^{\lambda} C_{\lambda}^{mn} T_{\lambda}^{mn}(g)$$

WIMV iterative process (Williams-Imhof-Matthies-Vinel):

$$f^{n+1}(g) = N_n \frac{f^n(g)f^0(g)}{\left(\prod_{\mathbf{h}=1}^{\mathbf{I}} \prod_{m=1}^{M_{\mathbf{h}}} P_{\mathbf{h}}^n(\mathbf{y})\right)^{\frac{1}{M_{\mathbf{h}}}}}$$

d
$$f^0(g) = N_0 \left(\prod_{\mathbf{h}=1}^{\mathrm{I}} \prod_{m=1}^{M_{\mathbf{h}}} P_{\mathbf{h}}^{\exp}(\mathbf{y})\right)^{\frac{1}{M_{\mathbf{h}}}}$$

E-WIMV (Rietveld only):

with $0 < r_n < 1$, relaxation parameter, M_h number of division points of the integral around k, w_h reflection weight

$$f^{n+1}(g) = f^n(g) \prod_{m=1}^{M_{\mathbf{h}}} \left(\frac{P_{\mathbf{h}}(\mathbf{y})}{P_{\mathbf{h}}^n(\mathbf{y})} \right)^{r_n \frac{W_{\mathbf{h}}}{M_{\mathbf{h}}}}$$

 Entropy maximisation (Schaeben) and exponential harmonics (van Houtte):

ar

$$f^{n+1}(g) = f^n(g) \prod_{m=1}^{M_{\mathbf{h}}} \left(\frac{P_{\mathbf{h}}(\mathbf{y})}{P_{\mathbf{h}}^n(\mathbf{y})} \right)^{\frac{r_{\mathbf{h}}}{M_{\mathbf{h}}}}$$

 $f_{s}(g) = e^{h(g)} \ge 0$ $C_{s\lambda}^{mn} = (2\lambda + 1) \int e^{h(g)} T_{\lambda}^{mn}(g) dg$

From f(g) to the pole figures

Deal with components in the ODF space

α

Pole figures

Component: (Hexagonal system) g = {85,80,35} ODF y-sections

Estimators of Refinement Quality

Visual assessment

Helix pomatia (Burgundy land snail: Outer com. crossed lamellar layer)

Bathymodiolus thermophilus (deep ocean mussel: Outer Prismatic layer)

Rietveld – Texture and more: Combined Analysis

$$I_{i}^{\text{calc}}(\mathbf{y}) = \sum_{n=1}^{\text{Nphases}} S_{n} \sum_{k} L_{k} \left| F_{k;n} \right|^{2} S(2\theta_{i} - 2\theta_{k;n}) P_{k;n}(\mathbf{y}) A + bkg_{i}(\mathbf{y})$$

Combined Analysis approach

Paterns taken from +25° to -25° (step 5°) tilts: thin film prepared for TEM plan view

3 out of 11 EPD, 1D and 2D plots. Pattern matching (Pawley)

Pawley pattern matching EWIMV Fiber component

EWIMV Fiber component 2-beams dynamical (Blackman)

Why needing QTA

- Correct for QTA effects in XRD: structure analysis QTA and structure correlations: yes, but f(g) and $|F_h|^2$ are different !

Charonia lampas lampas

 HI
 EHI = 3.00 kV
 Signal A = SE2
 Apenture Size = 30.00 µm

 WD = 3 mm
 Mag = 757 X
 Mag = 757 X

OD maximum (m.r.d.) OD minimum (m.r.d.)		299 0	196 0	2816 0
Texture index (m.r.d. ²)		42.6	47	721
Texture reliability factors	R _w (%)	14.3	11.2	32.5
	R _B (%)	15.6	12.7	47.8
Rietveld reliability factors	GoF (%)	1.72	1.72	3.05
	R _w (%)	29.2	28.0	57.3
	R _B (%)	22.9	21.7	47.2
	R _{exp} (%)	22.2	21.3	32.8

		Geological reference	Charonia lampas OCL	Charonia lampas RCL	Charonia lampas ICCL	Strombus decorus
a ((Å)	4.9623(3)	4.98563(7)	4.97538(4)	4.9813(1)	4.9694(3)
b ((Å)	7.968(1)	8.0103(1)	7.98848(8)	7.9679(1)	7.9591(4)
c ((Å)	5.7439(3)	5.74626(3)	5.74961(2)	5.76261(5)	5.7528(1)
Са	y	0.41500	0.41418(5)	0.414071(4)	0.41276(9)	0.4135(7)
	z	0.75970	0.75939(3)	0.76057(2)	0.75818(8)	0.7601(8)
С	y	0.76220	0.7628(2)	0.76341(2)	0.7356(4)	0.7607(4)
	z	-0.08620	-0.0920(1)	-0.08702(9)	-0.0833(2)	-0.0851(7)
01	y	0.92250	0.9115(2)	0.9238(1)	0.8957(3)	0.9228(4)
	z	-0.09620	-0.09205(8)	-0.09456(6)	-0.1018(2)	-0.0905(9)
02	x	0.47360	0.4768(1)	0.4754(1)	0.4864(3)	0.4763(6)
	y	0.68100	0.6826(1)	0.68332(9)	0.6834(2)	0.6833(3)
	z	-0.08620	-0.08368(6)	-0.08473(5)	-0.0926(1)	-0.0863(7)
ΔZ _{C-C}	_{D1} (Å)	0.05744	0.00029	0.04335	0.1066	0.031

Calcite: $\Delta Z = 0$

Biogenic intercrystalline effect

- Predict macroscopic anisotropic properties: Elastic

Arithmetic average

$$\langle \mathcal{T} \rangle = \int_{g} \mathcal{T}(g) f(g) dg$$
$$\langle (\mathcal{T})^{-1} \rangle \neq \langle \mathcal{T} \rangle^{-1}$$

Voigt average Homogeneous strain

$$C_{ijk\ell}^{M} = \langle C_{ijk\ell} \rangle$$

Upper bound

Reuss average Homogeneous stress

Lower bound

Geometric average

$$\begin{bmatrix} b \end{bmatrix} = \prod_{k=1}^{N} b_{k}^{w_{k}} = \exp(\langle \ln b \rangle)$$

scalar

$$\langle \ln b \rangle = \sum_{k=1}^{N} \ln b_k w_k$$

$$\begin{bmatrix} T \end{bmatrix}_{ij} = \exp(\langle InT \rangle_{i'j'})$$
tensor
$$\begin{bmatrix} \lambda_I \end{bmatrix} = 1/\begin{bmatrix} 1/\lambda_I \end{bmatrix} = \begin{bmatrix} \lambda_I^{-1} \end{bmatrix}^{-1}$$
Eigenvalues of T_{ij}

$$\left\langle \left(\mathbf{C}_{ijk\ell} \right)^{-1} \right\rangle = \left\langle \mathbf{C}_{ijk\ell} \right\rangle^{-1}$$

- Predict macroscopic anisotropic properties: Electric polarisation

$$\left\langle \mathbf{p}_{h}\right\rangle = \frac{\iint_{y} \mathbf{p}_{h} \mathbf{P}_{h}(\mathbf{y}) \, d\mathbf{y}}{\iint_{y} \mathbf{P}_{h}(\mathbf{y}) \, d\mathbf{y}}$$

- Predict macroscopic anisotropic properties: BAW

Propagation equation

$$\rho \frac{\partial^2 u^i}{\partial t^2} = \left[\mathbf{C}^{\mathrm{i}\ell \mathrm{mn}} \right] \frac{\partial^2 u_n}{\partial x^m \partial x^\ell}$$

Cubic crystal system

	$c_{11} \text{ or } c_{11}^{M}$	$c_{12} \text{ or } c_{12}^{M}$	$c_{13} \text{ or } c_{13}^{M}$	$c_{14} \text{ or } c_{14}^{M}$	$c_{33} \text{ or } c_{33}^{M}$	$c_{44} \text{ or } c_{44}^{M}$
Single crystal	201	54.52	71.43	8.4	246.5	60.55
LiNbO ₃ /Si	206.4	68.5	67.6	0.48	216.5	64
LiNbO ₃ /Al ₂ O ₃	204	65.7	69.7	1.1	219.9	63.2

THANKS !!!