Quantitative Texture Analysis of shells, Palm Canyon mylonites, natural ice, metamorphic amphibolites and SCT-microquartz D. Chateigner

- Laboratoire de Cristallographie et Sciences des Matériaux (CRISMAT)

- Ecole Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)

Outline

- Textures of mollusc shells
 - Generalities
 - a- and c-axes patterns of aragonitic layers, twinning
 - Complex growth of layers: microstructure versus texture
 - global versus local probes
 - QTA and Mollusc's Phylogeny
 - QTA and calcitic fossils
 - QTA and Mollusc's prothaetics
- Polyphased Mylonite (Palm Canyon, California)
- Natural ice from the Greenland GRIP core
- Metamorphic Amphibolites from Alps
- Siliceous Crust-Type microquartz

In collaboration with

C. Hedegaard (*DGB Aarhus, Denmark*) H.-R. Wenk (*DEPS Berkeley, USA*) L. Harper (*DES Cambridge, UK*) M. Morales (*SIFCOM Caen, France*)

Reference frame in mollusc shells

 Crystal: CaCO₃, aragonite (Pmcn) or calcite (R3c), for thousands of crystallites:

Typical x-ray diffraction pattern

Mytilus edulis (common mussel)

Crassostrea gigas (common oyster)

Measured for around 1000 sample orientations, using x-rays, neutrons With electrons, around 3000 crystallites probed, provided flat surface

Typical neutron diffraction pattern

ODF-reliability (x-rays: point detector): *Helix pomatia* (Burgundy land snail: Outer com. crossed lamellar)

OD-reliability (x-rays: PSD): *Bathymodiolus thermophilus* (deep ocean mussel: Outer Prismatic layer)

a- and **c**-axes patterns of aragonitic layers, twinning

c-axes texture patterns

a-axes texture patterns

Proposal for a nomenclature for texture and microstructure types

ISN: Inner Sheet Nacre ICCL: Inner Comarginal Crossed Lamellar ORCL: Outer Radial Crossed Lamellar ICN: Inner Columnar Nacre IPC: Inner Prismatic Calcite ...

Microstructure versus Texture

Inner sheet nacre of *Anodonta cygnea* (river mussel): no intra-mineral epitaxy

Bathymodiolus thermophilus (-2400m deep mussel): no inter-mineral epitaxy

Euglandina sp.: different crystallite shapes, close orientations !

From ISN to OCCL layers of *Cypraea testudinaria* (cowry): no inter-layer epitaxy

Cyclophorus woodianus: different SEM grain orientations look like single crystal from diffraction !

Twinning in aragonite ...

 $\alpha = 2 \arctan(a/b) = 63.8^{\circ}$

... forms nacre platelets ...

Bragg, 1937

Mutvei, 1980

... that rearrange ...

Pinctada margaritifera (black pearl oyster: ISN)

Haliotis cracherodi (black abalone: ISN)

Global versus Local probes

Crassostrea gigas (common oyster: Inner foliated calcite)

Electrons

x-rays

QTA and Mollusc's Phylogeny

From 70 mollusc species (gastropods, bivalves and cephalopods), around 150 layers studied

Closely related species, close textural characters, but significant variations: textural parameters can serve character analysis

Gastropoda

Phylogenic interest: nacre = ancestral (Carter & Clarck, 1985)

nacre not ancestral

Calcitic fossils: trichites

- Fragments of the large bivalve *Trichites* relatively abundant in shallow marine sediments from the Middle to Upper Jurassic of Europe, Asia and Africa

- Entire individuals are rare and the palaeobiology of the genus is poorly understood because of this

- Studied specimens are thick, some fragments up to 3 cm in thickness, composed of a coarse simple prismatic calcite

- Taxonomic position of Trichites remains problematic: pinnoids ?

Pinnoid and Pterioid prismatic layers

Pinna nobilis

c-axes // N a-axes at random

Pteria penguin

Mussels prismatic layers

Mytilus edulis c-axes ∠ N

a-axes single-crystal like

c-axes $\perp N$, // G Bathymodiolus thermophilus

Scallop and trichite prismatic layers

Amussium parpiraceum (scallop) c-axes ⊥ N, // G a-axes single-crystal like

Trichites (fossil) c-axes ∠ N a-axes random

Texture Analysis results

	Layer	ODF	ODF min	RP0	RP1	c-axis	a-axis	{001} Max	\mathbf{F}^2	- S
	type	Max	(mrd)	(%)	(%)			(mrd)	(mrd ²)	
		(mrd)								
Pinna nobilis	OP	303	0	50	29	// N	random	68	29	2.3
Pteria penguin	OP	84	0	29	15	// N	random	31	13	1.9
Amussium	OP	330	0	53	33	// G	<110>//	20	31	2.6
parpiraceum							М			
Bathymodiolus	OP	63	0	25	18	// G	// M	27	13	1.9
thermophilus										
Mytilus edulis	OP	207	0	41	25	75°	<110>//	23	21	2.2
						from N	М			
Trichites	Р	390	0	52	28	15°	random	56	41	2.2
						from N				
Crassostrea gigas	IF	908	0	45	31	35°	// M	>100	329	5.1
						from N				

No DNA is available on fossils like Trichites, but Trichite's textural parameters are close to the ones of *pinnoids* or *pterioids*: interesting for the classification of extinct species

Materials Science Forum, 408-412, 2002, 1687-1692

Calcitic fossils: *Belemnites*

c-axes perp. to the shell: as in other cephalopods

Aragonite fossils: *Baculities sp.*

c-axes perp. to the shell: as in other cephalopods, strong **c**-calcite to **c**-aragonite fossils interaction

QTA and Mollusc's prothaetics

Pinctada margaritifera, P. maxima and P. Nobilis nacres:

Bio-compatible and bio-inductive layers for rabbit bones (E. Lopez (MNHN, Paris)

P. Margaritifera

Some conclusions

- Shells exhibit a large variety of texture patterns, in their aragonite and calcite layers
- Textural parameters are similar for close species, different for distant species, they confirm organically driven growth and refute mineral epitaxy
- Texture and microstructure analyses give nonredundant information in shells
- "Texture" characters can be relevant for classification and phylogenetic interpretation, either for living or extinct species
- Texture may serve as a tool to predict bio-compatible species, and mechanical behaviours of shells

Strongly deformed ensemble, late Cretaceous (H.-R. Wenk, DEPS, Berkeley; B. Ouladdiaf ILL, Grenoble)

PC 82 mylonite	Biotite	Quartz	Albite	Anorthite	K-spar
Composition (weight %)	9.0	24.2	31.7	17.4	14.1
Space group	C2/m	R3	C-1		

Textures & Microstructures **33**, 1999, 35-43

Strongly overlapped peaks, intra- and inter-phases: using point detectors is hardly manageable

	Biotite	Quartz	Albite
Used reflections	010	110 1	1 1,1 1,
	002 + 110	102 + 012	11 1 , 20
		101 + 011	131
Declared overlaps	002/110	102/012	-
		101/011	
OD minima (m.r.d.)	0	0	0.1
OD maxima (m.r.d.)	11.3	12.1	9.9
S	-0.81	-0.58	-0.15
F^{2} (m.r.d. ²)	3	2.8	1.3
RP ₀ (%)	2	9	2.3
<u>RP</u> ₁ (%)	1.2	5.9	2
<u>Rw</u> ⁰ (%)	1.3	4.8	1.5
Rw ₁ (%)	1.2	3.7	1.5

// Lineation: <100>*-quartz // <100>*-albite <010>*-biotite at 90°

// foliation: <001>*-quartz // <100>*-biotite

quite <100>* fibre albite

- 60°C Neutron diffraction studies of -2098 m deep natural ice (P. Duval, Glaciology Lab, Grenoble)

Ice cube at -60°C, on beam line

Experimental-Normalized and Recalculated {110} and {200} neutron pole figures

{001} Recalculated neutron pole figure

Pole dispersion corresponds to polarised light microscopy analyses and to deformation-recrystallisation-rotation models

(M. Zucali, G. Gosso, DES, Milano)

Metamorphic amphiboles have been studied within **polymineralic** rocks; the **combined approach** allows extracting experimental pole figures for most of the rock-forming minerals.

Geol. Soc.London, 200, 2002, 239-253

Degree of fabric evolution, due to:

- deformation partitioning at metric-scale
- degree of chemical changes within amphiboles

- evolving metamorphic conditions during Alpine subduction (60-100 Million years).

(G. Camana, G. Artioli, DES, Milano)

American Mineralogist 87(8-9), 2002, 1128-1138

X-ray pole figures

EBSD

neutrons

