Combined x-ray Texture-Structure-Microstructure analysis applied to ferroelectric ultrastructures: a case study on Pb_{0.76}Ca_{0.24}TiO₃

L. Cont^{ab}, <u>D. Chateigner</u>^a, L. Lutterotti^b, J. Ricote^c, M.L. Calzada^c, J. Mendiola^c

LPEC, Univ. Le Mans, France DIM, Univ. di Trento, Italia DMF-ICMM-CSIC, Cantoblanco, Madrid, España

Summary

- Usual up-to-date approaches for polycrystals
 - Texture
 - Structure-Microstructure
 - Problems on ultrastructures
- Combined approach
 - Experimental needs
 - Methodology-Algorithm
 - Ultrastructure implementation
 - Case study on Pb_{0.76}Ca_{0.24}TiO₃
- Future trends

Usual Texture Analysis

We have to invert (Fundamental equation of Texture Analysis):

$$P_{hkl}(\vec{y}) = \frac{1}{2\pi} \int_{\langle hkl \rangle / / \vec{y}} f(g) d\widetilde{\varphi}$$

WIMV refinement method: Williams-Imhof-Matthies-Vinel

$$f^{n+1}(g) = N \left[\frac{f^n(g) f^0(g)}{\prod_{hkl} \left(P_{hkl}^n(\vec{y}) \right)^{\underline{l}}} \right]$$

Usual Structure-Microstructure Analysis (Full pattern fitting, Rietveld Analysis) Si₃N₄ matrix with SiC whiskers:

$$I_{hkl}(2\theta) = S \left| F_{hkl} \right|^2 m_{hkl} \frac{L_P}{V_c^2}$$

S: scale factor (phase abundance) F_{hkl}: structure factor (includes Debye-Waller term) V_c: unit-cell volume

$$S_{hkl}(2\theta) = S_{hkl}^{I}(2\theta) * S_{hkl}^{S}(2\theta)$$

S^I: instrumental broadening
 S^S: Sample aberrations

 crystallite sizes (iso. or anisotropic)
 rms microstrains ε

Problems on ultrastructures

- Strong intra- and inter-phase overlaps
- Mixture of very strong and lower textures
- texture effect not fully removable: structure
- structure unknown: texture

Combined approach

Experimental needs

Mapping Spectrometer space for correction of:

- instrumental resolution
- instrumental misalignments

Methodology-Algorithm

Pole figure extraction (Le Bail method): $P_{hkl}(\chi, \varphi)$

Rietveld and WIMV algorithm are alternatively used to correct for each others contributions: Marquardt nonlinear least squares fit is used for the Rietveld.

Ultrastructure implementation

Corrections are needed for volumic/absorption changes when the samples are rotated. With a CPS detector, these correction factors are:

$$C_{\chi}^{\text{top film}} = g_1 \left(1 - \exp(-\mu T g_2 / \cos \chi) \right) / \left(1 - \exp(-2\mu T / \sin \omega \cos \chi) \right)$$

$$C_{\chi}^{\text{cov.layer}} = C_{\chi}^{\text{top film}} \left(\exp\left(-g_2 \sum \mu_i' T_i' / \cos\chi\right) \right) / \left(\exp\left(-2\sum \mu_i' T_i' / \sin\omega\cos\chi\right) \right)$$

Gives access to individual Thicknesses in the refinement

Case study on Pb_{0.76}Ca_{0.24}TiO₃

PTC

a = 3.945(1) Å c = 4.080(1) Å T = 4080(10) Å t_{iso} = 390(7) Å $\epsilon = 0.0067(1)$

a = 3.955(1) Å T' = 462(4) Å t'_{iso} = 458(3) Å $\epsilon' = 0.0032(1)$

WIMV vs Entropy modified WIMV approach

Better refinement with E-WIMV:

- lower reliability factors (structure and texture)

- better high density level reproduction

Texture	Pt	РТС	Pt	РТС		
	Texture	Texture	RP_0	RP_0	Rw	R_{Bragg}
	Index	Index				
	$(m.r.d.^2)$	$(m.r.d.^2)$	(%)	(%)	(%)	(%)
WIMV	48.1	1.3	18.4	11.4	12.4	7.7
EWIMV	40.8	2	13.7	11.2	7	4.7

Future trends

- Combining with reflectivity measurements: independently measured and refined thicknesses, electron densities and roughnesses

- Adding residual stress determinations

- Multiple Analysis Using Diffraction, a web-based tutorial for the combined approach: search MAUD (Luca Lutterotti)

- Quantitative Texture Analysis Internet Course: http:// lpec.univ-lemans.fr/qta (Daniel Chateigner)

Acknowledgements

This work is funded by EU project ESQUI (http://lpec.univlemans.fr/esqui : an x-ray Expert System for microelectronic film QUality Improvement, G6RD-CT99-00169), under the RTD program.

Quantitative Texture Analysis Internet Course

http://lpec.univ-lemans.fr/qta