http://mpod.cimav.edu.mx

Material Properties Open Database

HOME

OUTLINE Contents of MPOD. Data files. Coupling properties. Piezoelectricity in MPOD. Implications of crystal symmetry (matrices' elements and longitudinal moduli surfaces are checked for consistency with the Neumann Principle). Magnetic coupling. MPOD and polycrystals' properties.

SEARCH BY -

DOCUMENTATION-

http://mpod.cimav.edu.mx

A selection of material properties databases and representation tools:

- The classical: Landolt-Börnstein (<u>http://materials.springer.com/</u>)
- The materials project. UC Berkeley (<u>https://www.materialsproject.org/</u>)
 - WinTensor. Univ. Washington
 (<u>http://cad4.cpac.washington.edu/wi</u> <u>ntensorhome/wintensor.htm</u>)
 - MPOD. UniCaen, CIMAV et al (<u>http://mpod.cimav.edu.mx</u>)

http://mpod.cimav.edu.mx

Material Properties Open Database

SEARCH BY -

HOME

OUTLINE Contents of MPOD. Data files. Coupling properties. Piezoelectricity in MPOD. Implications of crystal symmetry (matrices' elements and longitudinal moduli surfaces are checked for consistency with the Neumann Principle). Magnetic coupling. MPOD and polycrystals' properties.

DOCUMENTATION-

Material Properties Open Database

HOME SEARCH BY- DOCUMENTATION- ABOUT MPOD-

Here a list of all the properties present in the database is given. Following the link associated to the property name you can view the properties details and the set of datafiles associated with the property.

name	tensor dimensions	units	units detail
dielectric permittivity relative epsrij	3,3	1	pure number
dielectric permittivity relative epsrijS	3,3	1	pure number
dielectric permittivity relative epsrijT	3,3	1	pure number
dielectric stiffness relative betrijS	3,3	10^-4	pure number
dielectric stiffness relative betrijT	3,3	10^-4	pure number
elastic TOEC stiffness cijk	6,6,6	GPa	giga Pascal
elastic compliance sij	6,6	10^-12.Pa^-1	pico Pascal^-1
elastic compliance sijD	6,6	10^-12.Pa^-1	pico Pascal^-1
elastic compliance sijE	6,6	10^-12.Pa^-1	pico Pascal^-1
elastic stiffness cij	6,6	GPa	giga Pascal
elastic stiffness cijD	6,6	GPa	giga Pascal
elastic stiffness cijE	6,6	GPa	giga Pascal
elastic stiffness cijS	6,6	GPa	giga Pascal

Tensor nature of physical properties (an example)

P, *E*

P, *E*

 $\mathbf{P} = \boldsymbol{\varepsilon}_{o} \; \boldsymbol{\chi}^{P} \boldsymbol{\cdot} \; \mathbf{E}$

 $\chi^{\rm P}$ is a 2nd rank tensor.

Properties are associated with constitutive equations:

 $\mathbf{Y} = \mathbf{K} \cdot \mathbf{X}$ $(\mathbf{K} = \mathbf{Y} / \mathbf{X})$

Tensor ranks:

m, n, m+n

www.cimav.edu.mx

THERMO-ELASTO-ELECTRO-MAGNETIC EQUILIBRIUM PROPERTIES

Property	Related magnitudes	Tensor
Heat capacity C	Entropy (P0) / Temperature (P0)	PO
Elasticity s	Strain (P2) / Stress (P2)	P4
Electr. susceptibility χ^P	Polarization (P1) / Elec. Intensity (P1)	P2
Magn. susceptibility χ^M	Magnetization (A1) / Magn. Intensity (A1)	P2
Thermal expansion η	Strain (P2) / Temperature (P0)	P2
Pyroelectricity <i>p</i>	Polarization (P1) / Temperature (P0)	P1
Pyromagnetism <i>i</i>	Magnetization (A1) / Temperature (P0)	Al
Piezoelectricity d	Polarization (P1) / Stress (P2)	P3
Piezomagnetism b	Magnetization (A1) / Stress (P2)	A3
Magnetoelectricity α	Magnetization (A1) / Elec. Intensity (P1)	A2

 $P \rightarrow POLAR; A \rightarrow AXIAL; r = Tensor rank$

Physical properties: "Principal" and "Coupling" Interactions.

Some effects and their constitutive equations:

Paraelectricity: $P = \epsilon_0 \chi^P \cdot E$

Paramagnetism: $\mu_0 M = \mu_0 \chi^M \cdot H$

Elasticity: $S = s \cdot T$

Thermal expansion $S = \eta \cdot \Delta \theta$

Piezoelectricity: $P = d \cdot T$

 $S = d \cdot E$

Magnetoelectricity: $P = \alpha \cdot H$

 $\mu_0 M = \alpha \cdot E$

Textures and Microstructures 30: 167-189 (1998).

	magnetic antiferromagnetic ordering temperature Neel	0	К	kelvin
	magnetic paramagnetic critical temperature Neel	0	К	kelvin
1	magnetic paramagnetic critical temperature Neel transitionwidth	0	К	kelvin
	optical index extraordinary ne	0	1	pure number
	optical index ordinary no	0	1	pure number
	optical index principal Ni	0	1	pure number
	photoelastic pij	6,6	1	pure number
	photoclassis pijE	0	1	pure number
	piezoelectric dij	3,6	m.V^-1	meter per volt
	piezoelectric eij	3,6	C.N^-1	coulomb per newton
	piezoelectric gij	3,6	C.m^-2	coulomb oer square metre
Ń	piezoelectric hij	3,6	V.m.N^-1	volt metre per newton
	plessoptic pag	6,6	MPa^-1	one over mega Pascal
	residual resistivity ratio	0	1	pure number
	residual resistivity ratio high temperature	0	К	kelvin
	residual resistivity ratio low temperature	0	К	kelvin
	superconducting coherence length ksii	3	nm	nanometre
	superconducting critical field1 Hc1i	3	Т	tesla
	superconducting critical field2 Hc2i	3	Т	tesla
	superconducting critical temperature mid 50	0	К	kelvin
	superconducting critical temperature offset 10	0	К	kelvin
	superconducting critical temperature onset	0	К	kelvin
	superconducting critical temperature onset 90	0	K	kelvin

http://mpod.cimav.edu.mx

Material Properties Open Database

SEARCH BY -

HOME

OUTLINE Contents of MPOD. Data files. Coupling properties. Piezoelectricity in MPOD. Implications of crystal symmetry (matrices' elements and longitudinal moduli surfaces are checked for consistency with the Neumann Principle). Magnetic coupling. MPOD and polycrystals' properties.

DOCUMENTATION -

1000048	1000048.mpod	None	PMN-PT	Pb(Mg1/3Nb2/3)O3-PbTiO3(0.33)	Pb Nb0.447 Mg0.223 Ti0.33 O3	27
1000049	1000049.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.045)	Pb Nb0.637 Zn0.318 Ti0.07 O3	28
1000050	1000050.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.07)	Pb Nb0.62 Zn0.31 Ti0.07 O3	28
1000051	1000051.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.07)	Pb Nb0.62 Zn0.31 Ti0.07 O3	29
1000052	1000052.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.08)	Pb Nb0.613 Zn0.307 Ti0.08 O3	28
1000069	1000069.mpod	1010458	None	KDP, Mn-doped potassium dihydrogen phosphate	K H2 P O4 Mn0.009	38
1000070	1000070.mpod	1010458	None	KDP, potassium dihydrogen phosphate	K H2 P O4	38
1000094	1000094.mpod	9008860	None	Aluminum nitride	AI N	55
1000095	1000095.mpod	None	PIN-PMN-PT	Pb(In1/2Nb1/2)O3(0.33)-Pb(Mg1/3Nb2/3)O3(0.35)-PbTiO3(0.32)	Pb In0.165 Nb0.398 Mg0.167 Ti0.32 O3	56
1000096	1000096.mpod	None	PIN-PMN-PT	Pb(In1/2Nb1/2)O3(0.26)-Pb(Mg1/3Nb2/3)O3(0.46)-PbTiO3(0.28)	Pb In0.13 Nb0.436 Mg0.153 Ti0.28 O3	56
1000119	1000119.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.08)	Pb Nb0.613 Zn0.307 Ti0.08 O3	74
1000276	1000276.mpod	None	None	SBNN 70	Sr1.4 Ba0.6 Na Nb5 O15	128
1000277	1000277.mpod	None	None	SBNN 30	Sr0.6 Ba1.4 Na Nb5 O15	128
1000278	1000278.mpod	None	None	PIN-PMN-PT	Pb In0.135 Nb0.402 Mg0.133 Ti0.33 O3	129
1000279	1000279.mpod	None	None	PMN-PT	Pb Nb0.387 Mg0.193 Ti0.42 O3	130
1000281	1000281.mpod	None	None	BNTK	Bi0.5 Na0.25 K0.25 Ti1 O3	132
1000282	1000282.mpod	None	None	PZN-PT	Pb Nb0.613 Zn0.307 Ti0.08 O3	133
1000283	1000283.mpod	None	None	PZN-PT	Pb Nb0.613 Zn0.307 Ti0.08 O3	133
1000294	1000294.mpod	9011192	None	PbTiO3	Pb0.99 Ti1 O3	143
1000296	1000296.mpod	4500649	None	СТМ	Cs2 Te1 Mo3 O12	145
1000304	1000304.mpod	2100858	None	barium titanate	Ba1 Ti1 O3	150
1000307	1000307.mpod	1508402	None	Lithium hydrogen selenide	Li1 H3 Se2 O6	152

Source Material Properties Open Database

				HOME	SEARCH BY-	DOCUMENTATI	ON- ABOUT MP
View A	Article						
10117							
	Publication details						
title	Elastic and coefficients of barium titanate	piezoelectric single-crystal					
authors	Berlincourt, Don; Jaff	e,Hans					
journal	Physical Review						
year	1958						
volume	111						
issue	1						
first page	143						
last page	148						
reference	None						
pages number	None						
code	filename	cod code	phase generic	phase name	e chemi	cal formula	publication
1000304	1000304.mpod	2100858	None	barium titana	ate Ba1 Ti1	1 03	150
1000305	1000305.mpod	2100862	None	barium titana	ate Ba1 Ti	1 03	150

http://mpod.cimav.edu.mx

Material Properties Open Database

HOME

OUTLINE Contents of MPOD. Data files. Coupling properties. Piezoelectricity in MPOD. Implications of crystal symmetry (matrices' elements and longitudinal moduli surfaces are checked for consistency with the Neumann Principle). Magnetic coupling. MPOD and polycrystals' properties.

SEARCH BY -

DOCUMENTATION-

	1000048	1000048.mpod	None	PMN-PT	Pb(Mg1/3Nb2/3)O3-PbTiO3(0.33)	Pb Nb0.447 Mg0.223 Ti0.33 O3	27
	1000049	1000049.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.045)	Pb Nb0.637 Zn0.318 Ti0.07 O3	28
	1000050	1000050.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.07)	Pb Nb0.62 Zn0.31 Ti0.07 O3	28
	1000051	1000051.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.07)	Pb Nb0.62 Zn0.31 Ti0.07 O3	29
	1000052	1000052.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.08)	Pb Nb0.613 Zn0.307 Ti0.08 O3	28
	1000069	1000069.mpod	1010458	None	KDP, Mn-doped potassium dihydrogen phosphate	K H2 P O4 Mn0.009	38
	1000070	1000070.mpod	1010458	None	KDP, potassium dihydrogen phosphate	K H2 P O4	38
	1000094	1000094.mpod	9008860	None	Aluminum nitride	AI N	55
	1000095	1000095.mpod	None	PIN-PMN-PT	Pb(In1/2Nb1/2)O3(0.33)-Pb(Mg1/3Nb2/3)O3(0.35)-PbTiO3(0.32)	Pb In0.165 Nb0.398 Mg0.167 Ti0.32 O3	56
	1000096	1000096.mpod	None	PIN-PMN-PT	Pb(In1/2Nb1/2)O3(0.26)-Pb(Mg1/3Nb2/3)O3(0.46)-PbTiO3(0.28)	Pb In0.13 Nb0.436 Mg0.153 Ti0.28 O3	56
	1000119	1000119.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.08)	Pb Nb0.613 Zn0.307 Ti0.08 O3	74
	1000276	1000276.mpod	None	None	SBNN 70	Sr1.4 Ba0.6 Na Nb5 O15	128
	1000277	1000277.mpod	None	None	SBNN 30	Sr0.6 Ba1.4 Na Nb5 O15	128
	1000278	1000278.mpod	None	None	PIN-PMN-PT	Pb In0.135 Nb0.402 Mg0.133 Ti0.33 O3	129
	1000279	1000279.mpod	None	None	PMN-PT	Pb Nb0.387 Mg0.193 Ti0.42 O3	130
	1000281	1000281.mpod	None	None	BNTK	Bi0.5 Na0.25 K0.25 Ti1 O3	132
	1000282	1000282.mpod	None	None	PZN-PT	Pb Nb0.613 Zn0.307 Ti0.08 O3	133
	1000283	1000283.mpod	None	None	PZN-PT	Pb Nb0.613 Zn0.307 Ti0.08 O3	133
	1000294	1000294.mpod	9011192	None	PbTiO3	Pb0.99 Ti1 O3	143
	1000296	1000296.mpod	4500649	None	СТМ	Cs2 Te1 Mo3 O12	145
Ç	1000304	000304.mpod	2100858	None	barium titanate	Ba1 Ti1 O3	150
	1000307	1000307.mpod	1508402	None	Lithium hydrogen selenide	Li1 H3 Se2 O6	152

Centro de Investigación en Materiales Avanzados, S.C.

O O Material

View Datafile

Datafile info		
code	: 1000304	
filename	: 1000304.mpod	
cod code	: 2100858	
phase generic	: None	
phase name	: barium titanate	
chemical formula	: Ba1 Ti1 O3	
publication	: 150	

General experimental conditions/parameters

measurement method		:	RT
conditions temperature	[K]	2	298

Properties' values

piezoele	ctric dij [m.	.V^-1]			
-	-	-	-	392	-
-	-	-	392	-	-
-34.5	-34.5	85.6	-	-	-

Jet .

elastic	elastic compliance sijD [10^-12.Pa^-1]						
7.25	-3.15	-3.26	-	-	-		
-	7.25	-3.26	-	-	-		
-	-	10.8	-	-	-		
-	-	-	12.4	-	-		
-	-	-	-	12.4	-		
-	-	-	-	-	8.84		

.

Jet

elastic	complian	ce sijE [1	0^-12.P	a^-1]	
8.05	-2.35	-5.24	-	-	-
-	8.05	-5.24	-	-	-
-	-	15.7	-	-	-
-	-	-	18.4	-	-
-	-	-	-	18.4	-
-	-	-	-	-	8.84

1000048	1000048.mpod	None	PMN-PT	Pb(Mg1/3Nb2/3)O3-PbTiO3(0.33)	Pb Nb0.447 Mg0.223 Ti0.33 O3	27
1000049	1000049.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.045)	Pb Nb0.637 Zn0.318 Ti0.07 O3	28
1000050	1000050.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.07)	Pb Nb0.62 Zn0.31 Ti0.07 O3	28
1000051	1000051.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.07)	Pb Nb0.62 Zn0.31 Ti0.07 O3	29
1000052	1000052.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.08)	Pb Nb0.613 Zn0.307 Ti0.08 O3	28
1000069	1000069.mpod	1010458	None	KDP, Mn-doped potassium dihydrogen phosphate	K H2 P O4 Mn0.009	38
1000070	1000070.mpod	1010458	None	KDP, potassium dihydrogen phosphate	K H2 P O4	38
1000094	1000094.mpod	9008860	None	Aluminum nitride	AI N	55
1000095	1000095.mpod	None	PIN-PMN-PT	Pb(In1/2Nb1/2)O3(0.33)-Pb(Mg1/3Nb2/3)O3(0.35)-PbTiO3(0.32)	Pb In0.165 Nb0.398 Mg0.167 Ti0.32 O3	56
1000096	1000096.mpod	None	PIN-PMN-PT	Pb(In1/2Nb1/2)O3(0.26)-Pb(Mg1/3Nb2/3)O3(0.46)-PbTiO3(0.28)	Pb In0.13 Nb0.436 Mg0.153 Ti0.28 O3	56
1000119	1000119.mpod	None	PZN-PT	Pb(Zn1/3Nb2/3)O3-PbTiO3(0.08)	Pb Nb0.613 Zn0.307 Ti0.08 O3	74
1000276	1000276.mpod	None	None	SBNN 70	Sr1.4 Ba0.6 Na Nb5 O15	128
1000277	1000277.mpod	None	None	SBNN 30	Sr0.6 Ba1.4 Na Nb5 O15	128
1000278	1000278.mpod	None	None	PIN-PMN-PT	Pb In0.135 Nb0.402 Mg0.133 Ti0.33 O3	129
1000279	1000279.mpod	None	None	PMN-PT	Pb Nb0.387 Mg0.193 Ti0.42 O3	130
1000281	1000281.mpod	None	None	BNTK	Bi0.5 Na0.25 K0.25 Ti1 O3	132
1000282	1000282.mpod	None	None	PZN-PT	Pb Nb0.613 Zn0.307 Ti0.08 O3	133
1000283	1000283.mpod	None	None	PZN-PT	Pb Nb0.613 Zn0.307 Ti0.08 O3	133
1000294	1000294.mpod	9011192	None	PbTiO3	Pb0.99 Ti1 O3	143
1000296	1000296.mpod	4500649	None	СТМ	Cs2 Te1 Mo3 O12	145
1000304	1000304.mpod	2100858	None	barium titanate	Ba1 Ti1 O3	150

#\$Date: 2012-11-25 18:49:00 +0000 \$ #\$Revision: 001 \$ Daniel Chateigner # This file is available in the Material Properties Open Database (MPOD), # http://www.mpod.net/ # # The file may be used within the scientific community so long as # proper attribution is given to the journal article from which the # data were obtained. data 1000304 cod database code 2100858 _structure_refined 'no' _phase_name 'barium titanate' _phase_formula 'BaTiO3' _chemical_formula_sum 'Ba1 Ti1 03' _symmetry_point_group_name_H-M '4 m m' _cell_length_a 3.9998 _cell_length_b 3.9998 _cell_length_c 4.018 _cell_angle_alpha 90 _cell_angle_beta 90 _cell_angle_gamma 90 loop _publ_author_name 'Berlincourt, Don' 'Jaffe,Hans' _publ_section_title Elastic and piezoelectric coefficients of single-crystal barium titanate _journal_name_full 'Physical Review' journal volume 111 journal_issue 1 journal_page first 143 journal page last 148 journal year 1958 prop_measurement_method 'RT' _prop_dielectric_permittivity_relative_epsrijS 'epsrijS' _prop_dielectric_permittivity_relative_epsrijT 'epsrijT' prop elastic compliance sijD 'sijD'

CIF format

_prop_elastic_compliance_sijE 'sijE' prop electromechanical coupling kij 'kij' prop piezoelectric dij 'dij' prop piezoelectric gij 'gij' _prop_conditions_temperature 298 lcop_ prop_data_la.el _prop_data_tentorial_index _prop_data_value epsrijT 11 2920 epsrijT 22 2920 epsrijT 33 168 epsrij5 11 1970 epsrij5 22 1970 epsrijS 33 109 sijD 11 7.25 siiD 12 -3.15 sijD 13 -3.26 siiD 22 7.25 sijD 23 -3.26 sijD 33 10.8 sijD 44 12.4 sijD 55 12.4 sijD 66 8.84 sijE 11 8.05 sijE 12 -2.35 sijE 13 -5.24 sijE 22 8.05 sijE 23 -5.24 sijE 33 15.7 sijE 44 18.4 sijE 55 18.4 sijE 66 8.84 kij 15 0.570 kii 24 0.570 kij 31 0.315 kij 32 0.315 kii 33 0.560 dij 15 392 ij 24 392 d i 31 -34.5 di 32 -34.

3 85

http://mpod.cimav.edu.mx

Material Properties Open Database

HOME

OUTLINE Contents of MPOD. Data files. Coupling properties. Piezoelectricity in MPOD. Implications of crystal symmetry (matrices' elements and longitudinal moduli surfaces are checked for consistency with the Neumann Principle). Magnetic coupling. MPOD and polycrystals' properties.

SEARCH BY -

DOCUMENTATION -

cimary Centro de Investigación en Materiales Avanzados, S.C.

BaTiO₃ 4mm

14

12

10

8

6

Elastic compliance s

Young modulus

av.edu.r

Structure-properties relationships: The role of Symmetry

THE NEUMANN PRINCIPLE

Effect's symmetry is always -at leastequal to cause's symmetry

	Cause	Effect
Electromagnetic theory	Charges and currents	E and B fields
Crystal Physics	Structure	Properties

www.cimav.edu.m>

Centro de Investigación en Materiales Avanzados, S.C.

BaTiO₃ 4mm

Elastic compliance s4/mmm

14

12

10

8

av.edu.m

http://mpod.cimav.edu.mx

Material Properties Open Database

SEARCH BY -

HOME

OUTLINE Contents of MPOD. Data files. Coupling properties. Piezoelectricity in MPOD. Implications of crystal symmetry (matrices' elements and longitudinal moduli surfaces are checked for consistency with the Neumann Principle). Magnetic coupling. MPOD and polycrystals' properties.

DOCUMENTATION -

MATRIX NOTATION

ELASTO-PIEZO-DIELECTRIC MATRIX

 $S = s \cdot T + d \cdot E$ $D (\approx P) = d \cdot T + \epsilon \cdot E$

S_{I}		S ₁₁	<i>S</i> ₁₂	<i>S</i> ₁₃	S_{14}	<i>S</i> 15	<i>S</i> ₁₆	d_{11}	d_{12}	d_{13}	$\begin{bmatrix} T_I \end{bmatrix}$	
S_2		S ₂₁	S ₂₂	S23	S24	S ₂₅	S ₂₆	d_{21}	d_{22}	d_{23}	T_2	
S_3		S 31	S32	S33	S34	S35	S36	<i>d</i> ₃₁	d_{32}	<i>d</i> 33	T_3	
S_4		S ₄₁	S ₄₂	S43	S_{44}	S_{45}	S46	d_{41}	d_{42}	d_{43}	T_4	
S_5	=	S ₅₁	S ₆₂	S 5 3	S_{54}	S_{55}	S_{56}	d_{51}	d_{52}	<i>d</i> 53	T_5	
S_6		S ₆₁	S ₆₂	S ₆₃	S_{64}	S_{65}	S66	d_{61}	d_{62}	d_{63}	T_6	
D_l			<i>d</i> ₁₂	<i>d</i> ₁₃		<i>d</i> 15	<i>4</i> ¹⁶	S ₁₁	512	Eis	E_{I}	
D_2		d_{21}	d_{22}	d_{23}	d_{24}	d_{25}	d_{26}	\mathcal{E}_{21}	${\cal E}_{22}$	\mathcal{E}_{23}	E_2	
D_3		d_{31}	d_{32}	d_{33}	d_{34}	d_{35}	d_{36}	\mathcal{E}_{31}	${\cal E}_{32}$	\mathcal{E}_{33}	E ₃	
											A DRIVE WAR	

www.cimav.edu.mx

CRYSTALLOGRAPHIC ELASTO-PIEZO-DIELECTRIC MATRICES, IEEE

View Datafile

Datafile info

code	: 1000175
filename	: 1000175.mpod
cod code	: 5000035
phase generic	: None
phase name	: alpha-Quartz
chemical formula	: Sr 02
publication	: 98

General experimental conditions/parameters

measurement method		:	?
conditions temperature	[K]	:	?

4th Rank Tensor - Compliance

www.cimav.edu.mx

View Datafile

Datafile info	
code	: 1000240
filename	: 1000240.mpod
cod code	: 5000035
phase generic	: None
phase name	: alpha-Quartz
chemical formula	: 3i 82
publication	: 119

General experimental conditions/parameters

measurement method		:	COM
conditions temperature	[K]	2	?

Young Modulus, Single-crystal

www.cimav.edu.mx

70

Magnetic coupling: Magnetoelectricity

$$\begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \cdot \begin{bmatrix} H_1 \\ H_2 \\ H_3 \end{bmatrix}$$

LiCoPO₄

magnetic point group mmm' $(D_{2h}:C_{2v})$

$$\propto = \begin{bmatrix} 0 & 18.4 & 0 \\ 30.6 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ps/m} \quad (\text{LiCoPO}_4, \ T = 4.2 \text{ K})$$

Rivera, Ferroelectrics 161, 147 (1994)

Terfenol-D

Magnetocrystalline anisotropy

Magnetostriction

http://mpod.cimav.edu.mx

Material Properties Open Database

SEARCH BY -

HOME

OUTLINE Contents of MPOD. Data files. Coupling properties. Piezoelectricity in MPOD. Implications of crystal symmetry (matrices' elements and longitudinal moduli surfaces are checked for consistency with the Neumann Principle). Magnetic coupling. MPOD and polycrystals' properties.

DOCUMENTATION-

Materials 2013, 6, 4967-4984; doi:10.3390/ma6114967

OPEN ACCESS

ISSN 1996-1944 www.mdpi.com/journal/materials

Article

Predicting the Coupling Properties of Axially-Textured Materials

Luis E. Fuentes-Cobas ^{1,*}, Alejandro Muñoz-Romero ², María E. Montero-Cabrera ¹, Luis Fuentes-Montero ³ and María E. Fuentes-Montero ⁴

- ¹ Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih 31109, Mexico; E-Mail: elena.montero@cimav.edu.mx
- ² Delphi Automotive Systems, The Mexico Technical Center, Av Hermanos Escobar No 5756, Ciudad Juarez, Chih 32310, Mexico; E-Mail: alejandro.munoz07@gmail.com
- ³ Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; E-Mail: luis.fuentes-montero@diamond.ac.uk
- ⁴ Facultad de Ciencia Químicas, Universidad Autónoma de Chihuahua, Nuevo Campus Universitario, Circuito Universitario Chihuahua, Chih 31125, Mexico; E-Mail: mfuentes@uach.mx

The effect of texture on the physical properties of polycrystals (work in progress) DIELECTRIC CONSTANT. TEXTURED AURIVILLIUS CERAMICS

PbBi₄Ti₄O₁₅. Single crystal dielectric constant: $\varepsilon_{11} = \varepsilon_{22} = 18300$; $\varepsilon_{33} = 426$

Longitudinal piezoelectric module. Quartz polycrystals

CONCLUSIONS

- MPOD (<u>http://mpod.cimav.edu.mx</u>) is an open database that delivers measured materials properties in matrix, surface and 3D printing descriptions.
- Crystal thermo electro magneto elastic couplings exhibit a wide spectrum of anisotropic responses, linked with structural and magnetic symmetry, polar and axial nature of magnitudes and tensor ranks.
- Polycrystals' properties are derived from single-crystal ones, with texture as a modulating agent.

THANKS FOR YOUR ATTENTION! luis.fuentes@cimav.edu.mx

References:

- G. Pepponi, S. Grazulis, D. Chateigner: *MPOD: A Material Property Open Database linked to structural information*. Nuclear Instruments and Methods in Physics Research (2012), **B284**, 10–14.
- L. Fuentes-Cobas, D. Chateigner, G. Pepponi et al: *Implementing graphic outputs for the Material Properties Open Database (MPOD)*. Acta Cryst. (2014), A70, C1039.
- P. Moeck, W. Kaminsky, L. Fuentes-Cobas, J. C. Baloche, D. Chateigner: *3D printed models of materials tensor representations and the crystal morphology of alpha quartz*. Symmetry, Culture and Science (2016), *27*, 319-330.
- L. Fuentes-Cobas, A. Muñoz-Romero, M. E. Montero-Cabrera, L. Fuentes-Montero, M. E. Fuentes-Montero: *Predicting the Coupling Properties of Axially-Textured Materials*. Materials 6 (11), 4967-4984 (2013).
- L. Fuentes, J. Matutes, Ma. E. Fuentes: *Magnetoelectricity*. Ch. 3, Vol. 19 (2011) & Ch.3 Vol. 24 (2015), "Handbook of Magnetic Materials". Ed: K.H.J. Buschow. Elsevier.