

CNRS

Etude de l'endommagement dans des fluoroapatites

Sandrine Miro Le 21/02/2006

D. Chateigner, D. Grebille, D. Pelloquin, F. Studer (CRISMAT, Caen) J-M. Costantini (CEA/Saclay)

Introduction

Élaboration et caractérisation des échantillons

Étude de l'endommagement

- Amorphisation/Recristallisation

– Déformations

Conclusions et perspectives

Introduction (1/2)

- Contexte : Confinement des radionucléides (loi "Bataille" de 1991)
- Pourquoi les apatites ?
 - 1) Structure :

formule générale : Me₁₀(XO₄)₆Y₂
cristallise dans un système hexagonal
(Me = Ca, Na...; X = P, Si... et Y = F, OH...)
incorporation : I, Cs et actinides mineurs
2) Stabilité chimique et thermique
3) Stabilité sous irradiation

- phénomène d'auto-guérison
- Ex : Britholites du môle In Ouzzal (Algérie)

Composition la plus stable : fluoroapatite monosilicatée (Carpéna, 1998)

Introduction (2/2)

Matériaux étudiés

- Cristaux naturels de fluoroapatite de Durango : $Ca_{10}(PO_4)_6F_2$
- Céramiques frittés de fluoroapatite : $Ca_{10-x}Nd_x(PO_4)_{6-x}(SiO_4)_xF_2$ ($0 \le x \le 6$)

But de l'étude

– Analyser l'endommagement dû aux produits de fission et aux reculs $\boldsymbol{\alpha}$

 \sim Influence de (dE/dx)_e des ions lourds

Influence de la composition

Influence de l'orientation

M.E.T., µRaman et diffraction X

Élaboration et Caractérisation

Polissage et recuit thermique de 500 °C pendant 6 h

Caractérisation

Texturation : Orientation préférentielle (formes aciculaires) axe c // au plan des échantillons 🖄 substitution

Irradiation: Pb, Au, I, Xe et Kr (ex : Nd₀)

Ion	²⁰⁸ Pb ⁵⁵⁺	¹⁹⁷ Au ¹¹⁺	127 <u>T</u> 10+	¹²⁹ Xe ²³⁺	⁸⁶ Kr ²¹⁺
Energie (MeV)	1	28 r	· · · · ·	· · · · ·	70
Simulation	(de (uu	26 - 24 - 22 - 20 -	²⁰⁸ Pb ⁵⁵ ¹⁹⁷ Au ¹¹⁺	+ 127	F.F faible
R _p (<i>µ</i> m)	(keV/	18 - 16 - 14 - 12 -		¹²⁹ Xe ²³⁺	9,9
$\Delta R_{p} \left(\mu m \right)$	//dx),	10 8 6	seuil	⁸⁶ Kr ²¹⁺	0,4
(dE/dx) _e (keV/nm)	(dE		0.4 0.6	0.8 1.0	2,2
(dE/dx) _n (keV/nm)	C	En	ergie (Me	v/u)	,06
Dommages	Traces Cascades	Traces Cascades	Traces Cascades	Traces Cascades	Traces Cascades

Étude de l'Endommagement

M.E.T. : Analyse des traces latentes

M.E.T. : Recristallisation et radiolyse

Recristallisation et radiolyse 🖌 avec la substitution P-O : 6,18 eV/molécule < Si-O : 8,39 eV/molécule

Diffraction X : Protocole expérimental

- Minimisation de l'épaisseur sondée :
 Angle d'incidence ω = 5°
- Minimisation de la texture:
 Acquisition d'un spectre total en 2θ pour chaque position d'échantillon lors d'une rotation en φ

a5-(P-04)3-E

Nd₀ vierge sans correction de texture Approche de Rietveld

11

20.0

0.0.0

40.0

2-Theta [degrees]

60.0

Nd₀ vierge avec correction de texture Analyse combinée Maud

Diffraction X : Endommagement Influence de $(dE/dx)_e$: Nd₀

Simple impact : $F_d = B (1 - e^{-A\Phi t})$

) Double impact : $F_d = B (1 - (1 + A\Phi t) e^{-A\Phi t})$ A = πr^2

Irradiation Kr

Irradiation I

Endommagement 🛪 (dE/dx)_e

Diffraction X : Endommagement Influence de $(dE/dx)_{e}$: Nd₀

Comparaison des irradiations

Apparition de la phase	amorphe
- Kr : 5.10 ¹² Kr.cm ⁻²	52%
- I : 5.10 ¹¹ l.cm ⁻²	14%
- Au : 2.10 ¹¹ Au.cm ⁻²	27%
Saturation: - Kr : B = 85% - J : B = 90% - Au : B = 35%	

Faibles fluences : Endommagement 7 avec (dE/dx)_e Fortes fluences : Recristallisation > avec (dE/dx)

35 %

Diffraction X : Endommagement Influence de la composition

Irradiation I

Irradiation Au

- R_e et endommagement **>** avec la substitution

- Recristalisation 🔰 avec la substitution

μ Raman : Evolution du groupement PO₄³⁻

- Baisse d'intensité et élargissement 🐬 avec la fluence - Forte asymétrie à partir de 5.1012 Kr.cm-2

μ Raman : Endommagement Influence de (dE/dx)_e : Nd₀

Bon accord avec la diffraction des rayons X
 Différence de comportement entre mono et polycristaux

Diffraction X sur monocristaux

Choix des réflexions

– Irradiation // c : (002), (102), (222)

- Irradiation \perp c : (300), (402), (222)

- Choix de l'incidence
 - Symétrique $L_{max} = 13 \ \mu m$

Incidence asymétrique 5° Incidence symétrique Intensité 2θ Rp Ki Rp I, Au 27,8 **Rp** Pb

Exemple

Irradiation Au - Réflexion (102)

Diffraction X sur monocristaux

EFORMATION

Diffraction X sur monocristaux Influence de l'orientation

Irradiation Au

- Expansion // à la direction d'irradiation

R

T I O N

- Compression L à la direction d'irradiation

Diffraction X sur monocristaux Influence de (dE/dx)_e

- Expansion // à la direction d'irradiation

- Compression \perp à la direction d'irradiation

Conclusions et perspectives

Amorphisation :

- sous irradiation aux ions lourds : = (dE/dx)_e = substitution (diffraction X,

µRaman, T.E.M.) et différent suivant l'orientation (µRaman)

- sous faisceau électronique 🎽 substitution (T.E.M.)

- Recristallisation : sous irradiation aux ions lourds et sous faisceau électronique >> substitution (diffraction X, µRaman, T.E.M.)
- Déformations : A (dE/dx)_e et différentes suivant l'orientation (diffraction X)
- Travaux complémentaires : modèle d'affinement de la fraction d'endommagement (diffraction X)