

Combined Analysis for the characterisation of texture, microstructure and stresses of nanocrystalline thin layers

M. Morales, Daniel Chateigner, L. Lutterotti CIMAP, CRISMAT-ENSICAEN , France DIM-Univ Trento, Italia

Implemented codes

Rietveld

$$I_{i}^{calc}(\chi,\phi) = \sum_{n=1}^{Nphases} S_{n} \sum_{k} L_{k} |F_{k;n}|^{2} S(2\theta_{i} - 2\theta_{k;n}) P_{k;n}(\chi,\phi) A + bkg_{i}$$
$$P_{k}(\chi,\phi) = \int_{\omega} f(g,\phi) d\phi$$

Texture

 ODF solved using E-WIMV, Standard functions, Harmonics, ADC or max entropy

Anisotropic sizes and microstrains

- Texture helps the "real" mean shape determination
- Determination by peak deconvolution + Popa formalism

Layering

Strain-Stress

- Using the ODF and geometric mean approach
- Fitting the macrostress tensor

Si nanocrystalline thin films

Deposition: reactive magnetron sputtering (H_2 / Ar) **Low temperature**: 200°C **Substrates**: amorphous SiO₂ (a-SiO₂) and (100)-Si single-crystals Varying Target-substrate distance (d)

Aim: quantum confinement, photoluminescence properties

Typical refinement

broad, anisotropic diffracted lines, textured samples

Refinement Results

			RX	Anisotropic sizes (Å)			T	Reliability factors (%)					
Sample	d (cm)	a (Å)	thickness				Maximum	minimum	Texture index	RP ₀	R _w	R _B	R _{exp}
			(nm)	<111>	<220>	<311>	(m.r.d.)	(m.r.d.)	F ² (m.r.d ²)				
Α	4	5.4466 (3)		94	20	27	1.95	0.4	1.12	1.72	4.0	3.7	3.5
В	6	5.4439 (2)	711 (50)	101	20	22	1.39	0.79	1.01	0.71	4.9	4.3	4.2
С	7	5.4346 (4)	519 (60)	99	40	52	1.72	0.66	1.05	0.78	4.3	4.0	3.9
D	8	5.4461 (2)	1447 (66)	100	22	33	1.57	0.63	1.04	0.90	5.5	4.6	4.5
E	10	5.4462 (2)	1360 (80)	98	20	25	1.22	0.82	1.01	0.56	5.0	3.9	4.0
F	12	5.4452 (3)	1110 (57)	85	22	26	1.59	0.45	1.05	1.08	4.2	3.5	3.7
G	6	5.4387 (3)	1307 (50)	89	22	28	1.84	0.71	1.01	1.57	5.2	4.7	4.2
Н	12	5.4434 (2)	1214 (18)	88	22	24	2.77	0.50	1.12	2.97	5.0	4.5	4.3

Mean anisotropic shape

Schematic of the mean crystallite shape for Sample D represented in a cubic cell, as refined using the Popa approach and exhibiting a strong elongation along <111>, and TEM image

XRR: Roughness governed

AFM: homogeneous roughness

Refractive index linked to film porosities: Larger target-sample distances: increased compacity due to lower nanopowder filling

AIN/Pt/TiO_x/AI₂O₃/Ni-Co-Cr-AI E. Derniaux, PhD

T(AIN) = 14270(3) nm T(Pt) = 430(3) nm

Rw (%) = 24.120445 Rexp (%) = 5.8517213

 (χ, φ) randomly selected diagrams

AI_2O_3

a = 4.7562(6) Å c = 12.875(3) Å T= 7790(31) nm <t> = 150(2) Å <ε> = 0.008(3)

a = 3.569377(5) Å <t> = 7600(1900) Å < ϵ > = 0.00236(3) σ_{11} = -328(8) MPa σ_{22} = -411(9) MPa

101

102

100

002

a = 3.11203(1) Å c = 4.98252(1) Å T = 14270(3) nm <t> = 2404(8) Å < ϵ > = 0.001853(2) σ_{11} = -1019(2) MPa σ_{22} = -845(2) MPa

Rw (%) = 33.3

a = 3.91198(1) Å T = 1204(3) nm <t> = 2173(10) Å < ϵ > = 0.002410(3) σ_{11} = -196.5(8) σ_{22} = -99.6(6)

Rw (%) = 4.1

Substrate bias vs stress-texture evolution

Irradiated FluorApatite (FAp) ceramics S. Miro, PhD

Self-recrystallisation under irradiation, depending on SiO_4 / PO_4 ratio (FAp / Nd-Britholite) and on irradiating species

TEM of FAp irradiated with 70 MeV, 10¹² Kr cm⁻² ions

texture corrected, 10¹³ Kr cm⁻²

Virgin, with texture correction

Virgin, no texture correction

Fluence	Vc/V	А	с	<t></t>	Δ_{a/a_0}	Δ_{c/c_0}	R _w	R _B				
(ions.cm ⁻²)	(%)	(Å)	(Å)	(nm)	(%)	(%)	(%)	(%)				
0	100	9.3365(3)	6,8560(5)	294(22)	-	-	14.6	9.1				
Kr												
10 ¹¹	100	-	-	-	-	-						
10 ¹²	100	-	-	-	-	-						
5.10^{12}	49(1)	9.3775(9)	6.8912(8)	294(20)	0.44	0.53	24	15				
10 ¹³	20(1)	9.4236(5)	6.9105(5)	291(20)	0.94	0.82	9.9	6				
5.10^{13}	14(1)	9.3160(4)	6.8402(5)	294(22)	-0.21	-0.22	10.5	5.9				
I												
10^{11}	-	-	-	-	-	-						
5.10 ¹¹	86(2)	9.3603(3)	6.8790(5)	90(10)	0.26	0.35	23.9	15.1				
10 ¹²	-	-	-	-	-	-						
3.10^{12}	47(2)	9.3645(3)	6.8840(5)	91(6)	0.30	0.42	13.3	9				
5.10^{12}	29.2(5)	9.3765(5)	6.8881(6)	77(11)	0.44	0.48	10.4	7.3				
10 ¹³	13.2(2)	9.3719(4)	6.8857(6)	82(9)	0.38	0.45	6.7	4.9				

Single impact model associated to crystal size reduction

Cell parameters and volume increase, then relax

Amorphisation / recrystallisation competition: single or double impact

Amorphous/crystalline volume fraction (damaged fraction Fd = Va / V) as determined by x-ray diffraction

ZnSe:Cr²⁺ films N. Vivet, PhD

• Large emission band centred at 2200nm: ${}^{5}E \rightarrow {}^{5}T_{2}$ transition (Cr²⁺)

Single crystals and thin films: similar spectra

Residual stresses and/or stacking faults

Fibre Texture + 2 polytypes (6H and 3C) + anisotropic sizes + residual stresses and/or stacking faults + layering

Sum diagram: ω =13.65°, P_{RF} = 200W

Conclusions

- a) Texture affects phase ratio and structure determination
- b) Microstructure (crystallite size) affects texture (go to a)
- c) Stresses shift peaks then affects structure and texture determination
- d) Combined analysis may be a solution, unless you can destroy your sample or are not interested in macroscopic anisotropy ...
- e) If you think you can destroy it, perhaps think twice
- f) more information is always needed: local probes ...
- g) www.ecole.ensicaen.fr/~chateign/texture/combined.pdf