

RTM Amsterdam October 10th -11th, 2017

3D imaging of heterogeneous surfaces on laterite drill core materials

Saulius Grazulis⁵, Monique Le Guen² Henry Pilliere¹, Thomas Lefevre¹, Dominique Harang¹, Beate Orberger^{2*} Maubec³, Xavier Bourrat³, Ali Mohammad Djafari⁶, Daniel Chateigner⁴, **Thanh Bui**², Anne Salaun², Celine Rodriguez², Cédric Duée³, Nicolas

- (1) Thermo Fisher Scientific, Artenay, France
- (2) Eramet, Trappes, France
- * University of Paris-Sud, Orsay, France
- (3) BRGM, Orléans, France
- (4) University of Caen Normandie, Caen, France
- (5) Vilnius University, Lietuva, Lithuania
- (6) Centrale Supélec, Gif-sur-Yvette, France

Contents

- Introduction
- Laser triangulation profilometer
- Preliminary results
- Conclusions and perspectives

Nickel laterites

- Ni resources:
- Sulfide ores
- Ni laterites
- Ni laterites
- Consitute 60 70% of the world's Ni resources
 Reach 60% of total Ni
- production in 2014
 Contribute 20 30% of the
- Contribute 20 30% of total Co supply.

Butt *et al.*, 2013

Three nickel laterite ore types, based on the dominant minerals hosting Ni:

Ores	Oxide	Hydrous Mg silicate	Clay silicate
Mean grades of Ni	1.0 – 1.6 wt%	1.44 wt%	1.0 – 1.5 wt%
Principle ore minerals	Goethite, absolane, lithiophorite	Serpentine, talc, chlorite, sepiolite	Smectite, saponite
% of total Ni laterite resources	60%	32%	8%
Position in lateritic profiles	Mid to upper saprolite and upwards to the plasmic zone	Mid to lower saprolite	Mid to upper saprolite

Observations on drill cores

Observations on drill cores

To develop an imaging system of drill cores

- Need to take into account the following features/information:
- Depth, drilling speed
- Textures:
- RGB camera, profilometer
- Roughness
- Profilometer
- Hardness, porosity:
- Drilling system, hyperspectral cameras, RGB camera(?)
- Principal ore minerals:
- Hyperspectral imaging: diagnostic absorption features,
- Ni content:
- Portable XRF

SOLSA

ID2A scanning prototype

Goal: to built a system for scanning drill cores by imaging. Two results are expected:

- to know the outer shape of the core, in order to help for automatic positionning of the analytical system.
- to identify regions of interest on the surface of the core

Work in progress

- Hyperspectral imaging: to identify the principal ore minerals, (crystallinity)
- Building spectral library: collection of spectra of pure minerals (endmembers)
- Spectral classification: to classify different minerals using their spectra
- A classification method based on Support Vector Machines has been developed
- Spectral unmixing: to infer pure spectral signatures (endmembers) and their corresponding proportions (abundances)
- developed A method of sparse unmixing based on a spectral library has been
- Profile data (profilometer) and RGB images:
- To quantify the roughness of the surface
- To obtain the structure of grains and texture information of the drill cores

10

To support hyperspectral interpretation and pXRF analysis

Multi-scale strategy

For a better understanding, correlations should be done at a multi-scale:

 CM - Core scale: profiling + imaging Identification of global texture of drill core surfaces, principal ore minerals

Micro

Drilled core box

nis project has received

unding from the European Union's Horizon 2020 rogram under grant agreement No 689868

- MM grain scale : XRD + XRF
 Characterization of surfaces composition
- µM Raman
 Identification of individual phases

SCIENTIFIC

SH

Len

** 07 27

E

Contents

- Introduction
- Laser triangulation profilometer
- Preliminary results
- Conclusions and perspectives

Non-contact laser triangulation

laser splot on the object surface. The measurement sensitivity:

$$\frac{ds}{dZ} = \frac{f}{Z}\sin\theta$$

SCIENTIFIC

her

Description of the reflected signal

- Threshold: Actual threshold
- Height (intensity): Maximum intensity of the reflection above the threshold
- Position: the position (in pixel) corresponds to the pixel row on the CMOS sensor with maximum intensity. This is indicative of the surface profile.
- Width: The width of reflection in pixel. This value is indicative of the signal diffusion.

S C I E N T I F I C

Conveyor and imaging N

Imaging part is composed of:

- Conveyor (along y-axis)
- Profilometer (x, y, z, Intensity, width)
- Need to movement of conveyor to reconstruct the surface profile
- RGB camera: (x, y, RGB)
- No z information

research and innovation program under grant agreement No 689868

10/13/2017 This project has received funding from the European Union's Horizon 2020

S C I E N T I F I C

research and innovation program under grant agreement No 689868 10/13/2017 This project has received funding from the European Union's Horizon 2020

Contents

- Introduction
- Laser profilometers
- Preliminary results
- Conclusions and perspectives

381

Sample « breccia » XYZ profile

-Analysis of defects (cracks and porosity)

<u>Performing</u>: - Real surface reconstruction

Sample « breccia » series 2

Example: cylindrical surface of breccia

10/13/2017 This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 689868

Profiling principle: interaction light/matter

- of the height of the surface. The deviation of the main peak is indicative
- depend on the wavelength. by the surface, or refracted. This effect can The incident beam can be partialy absorbed
- incoming light. surface. All interfaces are able to diffuse the to quantify the optical characteristics of the The analysis of the reflected intensity allows

research and innovation program under grant agreement No 689868

10/13/2017 This project has received funding from the European Union's Horizon 2020

n1

n2

20

SCIENTIFIC her

Example: flat surface of granite

Laser line (405nm) on a flat surface of a granite rock.

Granit is mainly composed by 2 transparent minerals (quartz and felspar) and highly reflected mineral (biotite, in black)

Compared to a simple lightening, the laser allows to enhance the optical properties of the mineral, and intensity quantification can be done.

Mapping grains

- Comparison between profilometry and RGB images on an heterogeneous sample.
- There are more information in the image profile intensity than in RGB image
- 3 surface families:
- Large grain
- Small grain

S CIENTIFIC

Mapping grains

Observation : Picture (z) allows to identify clearly porosity and cracks

Image analysis of picture (z) will allows to measure roughness.

Serpentined sample (saprolite level on peridotite bed rock):

Serpentined sample (saprolite level on peridotite bed rock):

Contents

- Introduction
- Laser triangulation profilometer
- Preliminary results
- Conclusions and perspectives

Conclusions and perspectives

- Profilometry imaging brings a volumetric dimension that cannot be done with classical RGB.
- Morphologic parameters can be quantified better than classical RGB
- Mineralogical contour is improved.
- Data processing routines are under construction.
- Texture analysis will be done using RGB images
- Hyperspectral imaging (in progress):
- Collecting endmembers (buidling hyperspectral library)
- acquired from harzburgite, dunite and bauxite samples Evaluating hyperspectral classification and unmixing techniques on data

Thank you for your attention!

Depth of Field (mm)	Spatial resolution (um)	Field of View (mm)	Measurement distance (m)	Focal length (mm)	Aperture	Exposure time range (ms)	Maximum frame rate (fps)	Field of View (degree)	Spatial sampling	Spectral FWHM (nm)	Spectral bands	Spectral range (nm)	Parameters
1.91	79.36	81.26	0.118	15	1.7	0.1 - 20	330	38	1024	5.5	224	400 - 1000	FX10 VNIR
9.64	245.97	94.45	0.316	30	2	0.1 - 20	450	17	384	12	288	1000 - 2500	SWIR OLES30

VNIR/SWIR camera parameters

Sparse unmixing methods

32

lordache et al., IEEE Trans, 2014

The optimization is based on the alteridirection method of multipliers (ADMI	FCLS (Fully contrained least squares):	SUnSAL (Sparse unmixing by variable splitting and augmented Lagrangian):	CLSUnSAL (Collaborative sparse unmixing by variable splitting and augmented Lagrangian):	* solsa * Unmixing m
nating Bioucas-Dias <i>et al.</i> , 2010 M). Iordache <i>et al.</i> , IEEE Trans, 2014 Afonso <i>et al.</i> , IEEE Trans, 2011	$ \min_{X} \ AX - Y\ _{F}^{2} $ subject to: $X \ge 0$, $1X = 1$	$\begin{split} \min_{X} \ AX - Y\ _{F}^{2} + \lambda \ X\ _{1,1} \\ subject to: X \ge 0, \ 1X = 1 \end{split}$	$\begin{split} & \min_{X} \ \ AX - Y \ _{F}^{2} + \lambda \ \ X \ _{2,1} \\ & subject \ to: X \geq 0, \ 1X = 1 \end{split}$	ethods X (m x n)